CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/35 Paper 3 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	$\mathbf{9 7 0 1}$	$\mathbf{3 5}$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	35

Question	Indicative material	Mark	
(c)(i)(ii)	Correctly calculates Concentration $=0.1 \times 0.900=0.09(00)$ and No. of moles $=(\mathbf{i}) \times\left({ }^{(b)} / 1000\right.$	1	
(iii)(iv)	Correctly calculates No. of moles of $\mathrm{I}_{2}=0.5 \times$ (ii) and Concentration of $\mathrm{I}_{2}=($ iii $) \times 1000 / 25$	1	
(v)	Equation correctly balanced $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ and use of 2:1 mole ratio: answer to (v) $=2 \times$ (iv)	1	
(vi)	Two steps are required: - $M_{\mathrm{r}}={ }^{38.56} /(v)$ - Mass of water $=M_{\mathrm{r}}-(55.8+18+[2 \times 96.1])$ or $M_{\mathrm{r}}-266$	1	[6]
	Correctly calculates \boldsymbol{x} from mass of water moles of water $={ }^{\text {mass }} / 18$ and answer expressed to nearest integer	1	
	Final answers to (i) - (v) shown to $2-4$ sf (minimum 4 steps attempted)	1	
		[Total: 14]	
2 (a)	Initial and highest thermometer readings shown and temperature rise correctly calculated with unambiguous headings and correctly displayed units.	1	
Examiner to calculate Supervisor's and candidate's ΔT. Calculate the difference between the two values.			
	III and IV awarded dependant on comparability between Supervisor's and candidate's ΔT values.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	[3]
(b)(i)(ii)	Correctly calculates energy produced $=25 \times 4.2 \times \Delta T$ (a) and moles of FA $6=0.5 \times{ }^{25} / 1000(=0.0125)$ and both answers to a minimum of 2 sf	1	
(iii)	Correct expression $\Delta H=(\mathbf{i} / 1000 \times$ (ii)	1	[2]
(c)	Precision of readings shown in (a) and (c): all four thermometer readings shown to 0.0 or $0.5^{\circ} \mathrm{C}$	1	
Examiner to calculate Supervisor's and candidate's ΔT. Calculate the difference between the two values.			

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	35

	Marks awarded dependant on comparability between Supervisor's and candidate's ΔT values.	1	[2]
(d)(i)(ii)	```Correct expressions energy produced = 25 × 4.2 }\times\DeltaT(\mathbf{c} and \DeltaH=(d)(i)/1000\times(b)(ii)```	1	
	Correct (negative) sign shown in answers to (b)(iii) and (d)(ii) and both answers shown to $2-4$ sf	1	[2]
(e)	Hess' Law cycle drawn to show - displacement equation across top - left hand downward arrow, labelled (b)(iii) or calculated value - right hand downward arrow, labelled (d)(ii) or calculated value or allow from clear use of equations: Fe equation reversed and added to Zn equation or arrows showing correct directions	1	
	Correctly calculates (b)(iii) - (d)(ii), with correct sign.	1	[2]
(f)(i)	Correctly calculates: max \% error $=\left({ }^{2 \times 0.5} / \Delta \mathrm{T}(\mathrm{c})\right) \times 100$	1	
(ii)	One of the following: - use a more concentrated solution of copper(II) sulfate (and larger quantities of metals) - use a lid with hole for thermometer or another specific suggestion to improve insulation - plot a cooling curve - use a larger volume/use a burette/pipette to reduce percentage error in volume - use a pipette/burette instead of a measuring cylinder	1	[2]

[Total: 13]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	35

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	35

