MARK SCHEME for the May/June 2014 series

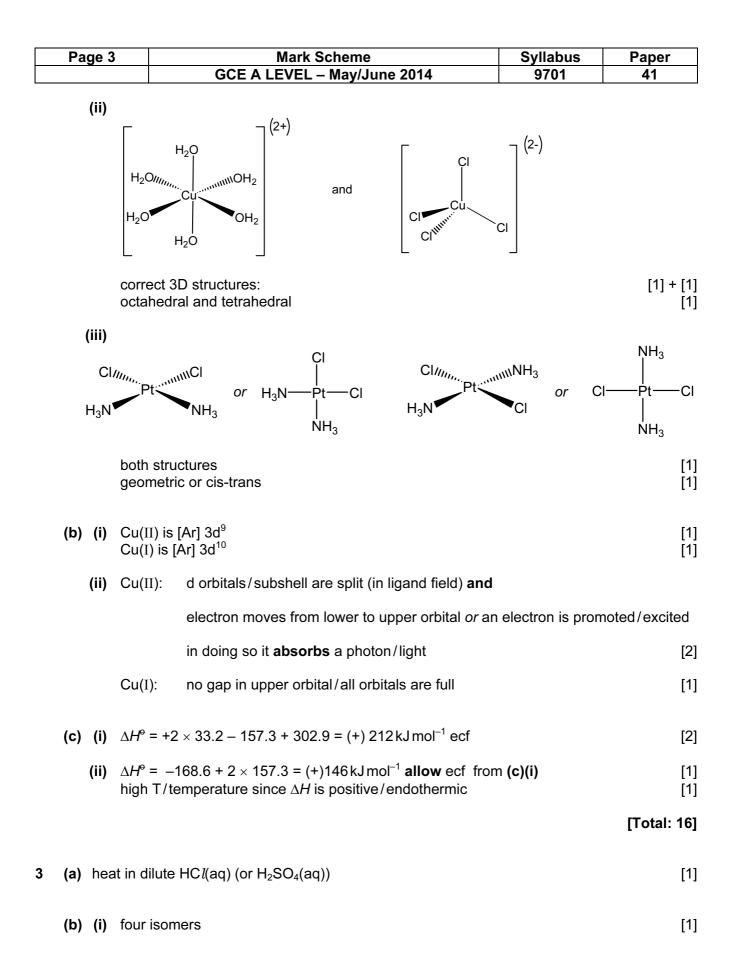
9701 CHEMISTRY

9701/41

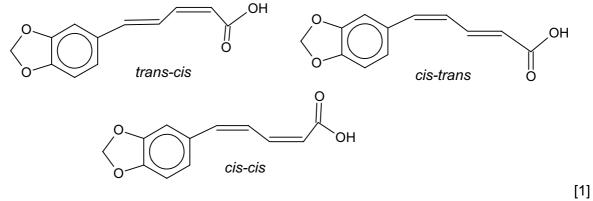
Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

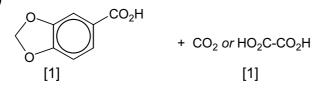
Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.


	Page 2	2		Mark Scheme	Syllabus	Paper	
			GCE A	LEVEL – May/June 2014	9701	41	
	Section A						
1	(a) (i)	-		e(r)/greater (for iron) ge(r)/greater (for iron)		[1] [1]	
	(ii)	stron	ner m. pt. due to) ng attraction betw e delocalised elec	een cations and electrons <i>or</i> trons		[1]	
) greater A_r and smaller radius		[1]	
	(b) (i)	-	ponents to be add pridge [<u>must be</u> la	ded: voltmeter <i>or</i> V ibelled]		[1] [1]	
	(ii)	M1: M2: M3	A and B either C or D C and D	copper (metal) or Cu and iron (met as 1 mol dm ^{-3} /1 M Cu ²⁺ or CuSO ₄ or CuC <i>l</i> ₂ or Cu (NO Fe ²⁺ or FeSO ₄ etc.		[1] [1]	
		-0				[1]	
			= 0.34 + 0.44 = ([1]	
	(iv)		is Fe ²⁺ ; (as [C] in negative	creases), the <i>E</i> of the Fe ²⁺ /Fe incre	ases/becomes r	nore positive/ [1]	
		so t nega		potential / E _{cell} would decrease / b	ecome less p	ositive/more [1]	
		or					
			is Cu ²⁺ ; (as [C tive/less negative] increases), the E of the Cu ²⁺ /	Cu increases/be	ecomes more [1]	
		so th	ne overall cell pot	ential/E _{cell} would increase/become	more positive/	ess negative [1]	
	(c) (i)			ourless to pink/pale purple st) permanent (pale) pink/pale purple	colour	[1]	
	(ii)			9.1/1000 = 3.62 × 10 ⁻⁴ mol} () = 1.81 × 10⁻³ mol		[1]	
		mass	s of Fe = 55.8 x 1	$.81 \times 10^{-3}$ = 0.101 g (M2 × 55.8) ecf		[1]	
		<i>M</i> ₁=r	mass/moles=0.5	$00/1.81 \times 10^{-3}$ = 276.2 ecf		[1]	
						[Total: 16]	
2	(a) (i)			oound/molecule/species/ion_formed d to one or more ligands/groups/mo		etal atom/ion [1]	

A *ligand* is a species that contains a **lone pair** of electrons that forms a **dative bond** to a metal atom/ion/*or* a lone pair donor to metal atom/ion [1]


Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	41
		•	

(ii) must be skeletal

(iii)

4

(c) (i)	$K_{w} = [H^{+}][OH^{-}]$	[1]
(ii)	In 0.15 mol dm ⁻³ NaOH, [OH ⁻] = 0.15 mol dm ⁻³ [H ⁺] = K_w /[OH ⁻], so [H ⁺] = 1 × 10 ⁻¹⁴ /0.15 = 6.67 × 10 ⁻¹⁴ mol dm ⁻³ pH = -log ₁₀ [H ⁺] = 13.18 (13.2) ecf from [H ⁺]	[1] [1]
(iii)	piperidine is a poorer proton acceptor <i>or</i> piperidine is partially ionised	[1]
(iv)	piperidine should be a stronger base/more basic than ammonia because of the electron-donating (alkyl/CH ₂) groups	[1]
(d) (i)	n(HC <i>l</i>) at start = $0.1 \times 20/1000 = 2.0 \times 10^{-3}$ mol n(HC <i>l</i>) at finish = $2 \times 10^{-3} - 1.5 \times 10^{-3} = 0.0005/5 \times 10^{-4}$ mol	[1]
(ii)	this is in 30 cm ³ of solution, so [HC <i>I</i>] at finish = $0.5 \times 10^{-3}/0.030 = 1.67 \times 10^{-2} \text{ mol dm}^{-2}$ pH = $-\log_{10}(1.67 \times 10^{-2}) = 1.78 \text{ ecf from (d)(i)}$	3 [1]
(iii)	pH/vol curve: start at pH 11.9 vertical portion at V = 15 cm ³ levels off at pH 1.8	[1] [1] [1]
(iv)	indicator is B	[1]
	[Total:	16]
(a)	three from phenol (secondary) alcohol	

(secondary) alconol (primary) amine arene/aryl/benzene

3 × [1]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	41
(b) (i) Com	pound Z is OH CH CN		
	но		[1
	1: HCN + NaCN <i>or</i> HCN + base 2: H ₂ + Ni <i>or</i> LiA <i>l</i> H ₄ <i>or</i> Na + ethanol		[1 [1
(ii) brom	nine decolourises <i>or</i> goes from orange to colourless <i>o</i> Br	r white ppt. formed	1 [1
e.g.	HO 2 or 3 bromines in ring		
	Br		[1
(i)	NaO OH NH ₂ (or ionic)		[
(ii)	HO HO HO OH NH_3Cl $^+NH_3$ (or ionic)		[
(iii)	OCOCH ₃ NHCOCH ₃ NHCOCH ₃		
M2:	amide alcoholic ester <u>both</u> phenolic esters		[[[5] max [4
(d) amide ester			[]

	Page 6	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – May/June 2014	9701	41
5	(a) (i) –O⊢	l <i>or</i> hydroxyl groups (allow alcohol groups)		[1]
	(ii) alke	nes <i>or</i> C=C (double) bonds <i>or</i> carbon double bonds		[1]
	(iii) CH₃	CH(OH) or CH ₃ CO- groups		[1]
	(b) V is CH ₃	CH(OH)CH=CH ₂		[1]
	W is CH	3CH=CHCH₂OH		[1]
	(c) compour	nd V shows optical isomerism		
	(ecf for '	geometric(al)' if candidate's V is capable of cis-trans)		[1]
	H ₂ C===(CH_3 CH_3 HO - C HO - C $CH = CH_2$		[1]
	(d)	ОН ОН		
		OH or CH ₃ CH(OH)CH(OH)CH ₂ OH		[1]

[Total: 8]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	41

6 (a)

(b)

feature	level of bonding
formation of α -helix	secondary
formation of disulfide bonds	tertiary
formation of ionic bonds	tertiary
linking amino acids	primary

name

Deoxyribose

Cytosine

Phosphate

Thymine

[3]

4	х	[1]
•		1.1

[1]

[1]

(c) (i) H/hydrogen (bonds between bases)

block letter

J

Κ

L

Μ

(ii) Bonds are weak and so require relatively little energy to break/are easily broken

(d) ____

	(sugar, J)	(base, M)
DNA	deoxyribose	thymine/T
RNA	ribose	uracil/U

[1]

[Total: 10]

7 (a) Expression:
$$n = \frac{100 \times 2.5}{1.1 \times 74}$$
 or equivalent [1]
 $n = 3.1$ hence **G** has three carbon atoms [1]

(b) (i) (δ 1.1) RCH₃ or RCH₂R or methyl or CH₃

(
$$\delta$$
 2.2) (R)CH₂CO(R) or CH₃CO(R)

(
$$\delta$$
 11.8) (R)COOH or (R)CONH(R) $3 \times [1]$

Page 8	8		Scheme		Syllabus	Paper
		GCE A LEVEL -	- May/June 2014		9701	41
(ii)	The	(–OH) peak at δ 11.8 (disa	ppears)			
		use of (O)H-D exchange o R-OH + D₂O ⇔ R-OD + H		g this		
(iii)	CH ₃	CH ₂ CO ₂ H				
(c) (i)		Ο			НО	ОН
	H₃C-	с осн ₃ ог	o or		or	
	or	H ₃ C O H ₃ C H				
(ii)		ethyl ethanoate: δ 2.0–2.1 3–4.0				
		1, 3-dioxolane: δ 3.3–4.0 3–5.0				
		1, 2-dioxolane: δ 0.9–1.4 3–4.0				

Or if dihydroxycyclopropane: δ 0.9–1.4	[1]
δ 0.5–6.0	[1]

[Total: 11]

8	(a) (i)	Amide or ester or peptide	[1]
	(ii)	Hydrolysis	[1]
	(iii)	Drug B	[1]
	(iv)	two ester and one amide groups circled	[2]
	(b) (i)	At point Q because the hydrocarbon tails region is hydrophobic/non-polar/ form v Waals only or can dissolve in the fat-soluble area	an der [1]
	(ii)	They all contain polar <i>or</i> hydrogen-bonding (groups)	[1]
	(c) (i)	range 1×10^{-9} to 1×10^{-7} m	[1]
	(ii)	(higher frequency radiation could) cause tissue/cell damage or mutation <i>or</i> harmful to cells	[1]
		[To	tal: 9]