CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level

MARK SCHEME for the May/June 2014 series

9701 CHEMISTRY

9701/23 Paper 2 (Structured Questions AS Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9701	23

Question	Mark Scheme – 9701/23	Mark	Total mark
1 (a)	the amount of substance containing 6(.02) x 10 ²³ (fundamental) particles of that substance (or; the amount of substance containing as many particles as there are atoms in 12g of	(1)	
	carbon-12)		[1]
(b) (i)	2NaOH + CO ₂ → Na ₂ CO ₃ + H ₂ O	(1)	[1]
	allow ionic equations or formation of NaHCO ₃		
(ii)	$95 - 75 = 20 \mathrm{cm}^3$	(1)	[1]
(iii)	excess oxygen = 75 cm ³ so used = 25 cm ³	(1)	[1]
(iv)	$2C_xH_y + 5O_2 \rightarrow 4CO_2 + zH_2O$	(2)	[2]
(v)	$x = 2$; $y = 2$; $z = 2$ (or $z = 1$ if $C_xH_y + 2.5O_2 \rightarrow 2CO_2 + zH_2O$)	(1+1+1)	[3]
(c) (i)	$\mathbf{W} = (CH_3)_2C = CH_2 = 2$ -methylpropene	(1)	
	X = (CH ₃) ₂ CBrCH ₃ = 2–bromo–2–methylpropane	(1)	
	$\mathbf{Y} = (CH_3)_2CHCH_2Br = 1-bromo-2-methylpropane$	(1)	
	$\mathbf{Z} = (CH_3)_3COH = 2$ -methylpropan-2-ol	(1)	[4]
(ii)	Markovnikov addition/H adds to C with most Hs	(1)	
	tertiary carbocation more stable than primary	(1)	
	inductive effect of three alkyl groups owtte	(1)	[Max 2]
		Total	15

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9701	23

2 (a)	$NH_4^+ + OH^- \rightarrow NH_3 + H_2O$	(1)	[1]
(b) (Initial acid = $40 \times 0.4/1000 = 0.016$ (mol)	(1)	[1]
(i	$\frac{25 \times 0.12}{1000} = 3.0 \times 10^{-3} \text{ (mol) (of OH}^- \text{ used)}$	(1)	[1]
(ii	excess acid = $OH^- = 0.003$ acid reacted = $0.016 - 0.003 = 0.013$ (mol)	(1)	[1]
(iv	NH ₄ ⁺ :H ⁺ = 1:1 so = 0.013 (mol NH ₄ ⁺)	(1)	[1]
(1	amount of Cu = mass/ M_r = 0.413/63.5 = 6.5 × 10 ⁻³ (mol) so Cu:NH ₄ = 0.0065:0.013 = 1:2 so x = 2	(1) (1)	[2]
(v	$M_{\rm r} = 399.7$	(1)	[1]
		Total	8

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9701	23

3 (a) (i)	(reaction between atmospheric N ₂ and O ₂) due to lightning/biological processes or bacteria in soil AND in car engines/power stations/metal refining/furnaces	(1)	[1]
(ii)	$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$ OR $2NO_2 + H_2O + 1/2O_2 \rightarrow 2HNO_3$ OR $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$	(1)	[1]
(iii)	$SO_2 + NO_2 \rightarrow SO_3 + NO$	(1)	
	$NO + 1/2O_2 \rightarrow NO_2$	(1)	
	$SO_3 + H_2O \rightarrow H_2SO_4$	(1)	[3]
(b) (i)	$K_p = pN_2O_4/(pNO_2)^2$	(1)	[1]
(ii)	moles of $NO_2 = 0.32$	(1)	[1]
(iii)	$x(N_2O_4) = 1.84/2.16 = 0.85$	(1)	
	$x(NO_2) = 0.32/2.16 = 0.15$ ecf from (b)(ii)	(1)	[2]
(iv)	$pN_2O_4 = 0.85 \times 140 = 119 \text{ (kPa)}$	(1)	
	pNO ₂ = 0.15 × 140 = 21 (kPa) ecf from (b)(iii)	(1)	[2]
(v)	$K_p = 119/21^2 = 0.270 \text{ kPa}^{-1}$ ecf from (b)(i) and (b)(iv)	(2)	[2]
		Total	13

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9701	23

4 (a) (i)	decreases down the group ora	(1)	[1]
(ii)	X–X bond strength decreases from $Cl-Cl$ to $I-I$	(1)	
	But decreasing strength of H–X down group more significant	(1)	[2]
(b) (i)	$CaCl_2 + H_2SO_4 \rightarrow CaSO_4 + 2HCl$ OR $CaCl_2 + 2H_2SO_4 \rightarrow Ca(HSO_4)_2 + 2HCl$	(1)	[1]
(ii)	HI/I ⁻ reduces/is oxidised by conc H ₂ SO ₄ /because iodine is produced instead	(1)	[1]
(iii)	brown gas/fumes produced $2H_2SO_4 + 2KBr \rightarrow SO_2 + Br_2 + 2H_2O + K_2SO_4$ (or ionic)	(1) (1+1)	[3]
(c) (i)	CH ₃ CH ₂ CH ₂ CH ₂ Br primary	(1)	
	CH ₃ CH ₂ CHBrCH ₃ secondary	(1)	
	(CH ₃) ₂ CHCH ₂ Br primary	(1)	
	(CH ₃) ₃ CBr tertiary	(1)	[4]
(ii)	2-bromobutane	(1)	
	H ₃ C H ₃ C		
	H_3C		
	CH ₃ CH ₃	(1+1)	[3]
(d)	halide ions liberated (by hydrolysis of halogenoalkanes)form precipitate with Ag ⁺	(1)	
	$\mathbf{OR} \ Ag^{\scriptscriptstyle +} + X^{\scriptscriptstyle -} \to \ AgX$		
	order due to decreasing bond strength (C-I <c-br<c-cl)< th=""><th>(1)</th><th>[2]</th></c-br<c-cl)<>	(1)	[2]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9701	23

(e) (i)	nucleophilic substitution	(2)	[2]
(ii)	H H H C C Br H C C OH + Br HÖ M1 = curly arrow from lone pair on OH; M2 for curly arrow from C-Br bond to Br AND dipole	(2)	[2]
(0)	,		
(f) (i)	inert or volatile owtte	(1)	[1]
(ii)	destroy ozone	(1)	
	(in stratosphere) C–C1 bond broken by UV/free radicals produced	(1)	[2]
		Total	24