UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	2 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9701	43

1 (a)
$$Cr^{3+}$$
: $1s^22s^22p^6$ $3s^2$ $3p^6$ $3d^3$ [1] Mn^{2+} : $1s^22s^22p^6$ $3s^2$ $3p^6$ $3d^5$ [1]

- (b) (i) Any two from
 - H⁺ is on the oxidant/L.H. side of each of the ½-equations, or H⁺ is a reactant
 - (increasing [H⁺]) will make E[⊕] more positive
 - (increasing [H⁺]) will drive the reaction over to the R.H./reductant side *or* forward direction

[1] + [1]

(c) (i)
$$MnO_2 + SO_2 \longrightarrow MnSO_4 (or Mn^{2+} + SO_4^{2-})$$
 [1]

(ii) No effect, because H⁺ does not appear in the overall equation *or* its effect on the MnO₂/Mn²⁺ change is cancelled out by its effect on the SO₂/SO₄²⁻ change [1]

(d) (i)
$$MnO_2 + 4H^+ + Sn^{2+} \longrightarrow Mn^{2+} + 2H_2O + Sn^{4+}$$
 [1]

(ii)
$$n(MnO_4^-) = 0.02 \times 18.1/1000 = 3.62 \times 10^{-4} \text{ mol}$$
 [1] $n(Sn^{2+}) = 3.62 \times 10^{-4} \times 5/2 = 9.05 \times 10^{-4} \text{ mol}$ [1] $n(Sn^{2+})$ that reacted with $MnO_2 = (20 - 9.05) \times 10^{-4} = 1.095 \times 10^{-3} \text{ mol}$ [1] reaction is 1:1, so this is also $n(MnO_2)$ mass of $MnO_2 = 1.095 \times 10^{-3} \times (54.9 + 16 + 16) = 0.0952 \text{ g}$ [1]

⇒ **95% – 96%;** 2 or more s.f. [1]

[Total: 16]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	43

2

(a) (i) A molecule/ion/species with a lone pair (of electrons) or electron pair donor... that bonds to a metal ion/transition element.... [1] (ii) ...by means of a dative/coordinate (covalent) bond [1] [2] (b) (i) straight line from (0, 0.01) to point at (350, 0.0028) with all points on the line [1] (ii) order w.r.t. Cr(CO)₆ is 1 and order w.r.t. PR₃ is zero [1] because (a) Cr(CO)₆ graph has a constant half-life (which is 700 s) or construction lines on graph showing this) [1] because (b) PR₃ graph is a straight line (of constant slope) or line shows a constant rate of reaction or no change in rate or shows a linear decrease [1] (iii) rate = $k[Cr(CO)_6]$ [1] $k = (0.9 - 1.1) \times 10^{-3} (s^{-1})$ (one or more s.f.) [1] either rate₀ = $0.01/1020 = 9.8 \times 10^{-6} \text{ mol sec}^{-1} \text{ when } [\text{Cr}(\text{CO})_6] = 0.01 \text{ mol dm}^{-3}$ so k = $9.8 \times 10^{-6}/0.01 = 9.8 \times 10^{-4}$ or $t_{1/2} \approx 700 \text{ sec}$ $k = 0.693/700 = 9.9 \times 10^{-4}$ (iv) (units of k are) sec⁻¹ [1] (v) N.B. the chosen mechanism must be consistent with the rate equation in (iii). Thus: either if rate = $k[Cr(CO)_6]$ mechanism B is consistent [1] because it's the only mechanism that does NOT involve PR₃ in its slow/rate-determining step or only Cr(CO)₆ is involved in slow step or [PR₃] does not affect the rate [1] or if rate = $k[Cr(CO)_6][PR_3]$, then mechanism A or C or D is consistent [1] because both reactants are involved in slow step [1] [9]

[Total: 11]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	43

3 (a) (i) \mathbf{E} is $CH_3CH(NH_2)CN$

[1]

(ii) C₆H₅CH₂CHO

[1] **[2]**

(b) (i) a polymer/polypeptide of amino acids, (joined by peptide bonds)
(allow 'chain of amino acids' but not 'sequence': the idea of 'many' has to be conveyed)
[1]

(ii)

peptide bond shown in full (C=O) in an ala-ala fragment in a chain two repeat units

[1] [1]

Allow peptide bond shown in full (C=O) in a dipeptide ala-ala for 1 mark

[3]

(c) (i) $HClor H_2SO_4 or NaOH or H^+ or OH^-$ reagents

[1]

+ heat and H₂O/aq (allow H₃O⁺).

If T is quoted, 80 °C < T < 120 °C. NOT warm. conditions

[1]

(ii)

$$\begin{picture}(2000) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$$

(if a structural formula, it must have all H atoms) allow protonated or deprotonated versions [1] + [1]

[max 3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	43

(d) (i)
$$NH_3^+-CH(CH_3)-CO_2^-$$
 [1]

(ii)

compound	zwitterion
H_2N CO_2H	H_3N \bigcirc
OH NHCH ₃	NH ₂ CH ₃
HO NH ₂	⊖ _O ⊕ NH ₃

[3] [4]

[1]

(e) (i) A buffer is a solution whose pH stays fairly constant or which maintains roughly the same pH or which resists/minimises changes in pH [1]

when **small/moderate** amounts of acid/H⁺ or alkali/OH⁻ are added

(ii)
$$NH_2CH(CH_3)CO_2H + H(Cl) \longrightarrow {}^{\dagger}NH_3CH(CH_3)CO_2H (+ Cl^{-})$$
 [1]

(iii) blood contain **HCO**₃⁻ (or in an equation) [1] which absorbs H⁺ or equn

 $H^+ + HCO_3^- \longrightarrow H_2CO_3 (H_2O + CO_2)$ $OH^- + HCO_3^- \longrightarrow CO_3^{2-} + H_2O$ or absorbs OH⁻ or equn [1]

(iv)
$$[CH_3CO_2Na] = 0.05 [CH_3CO_2H] = 0.075$$
 [1] $pH = 4.76 + log (0.05/0.075) = 4.58 \text{ or } 4.6$ [1]

[7]

[Total: 19]

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9701	43

4 (a)
$$Ca(NO_3)_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2$$
 [1]

- (b) (down the group) nitrates become more stable or require a higher temperature to decompose [1] as size/radius of (cat)ion increases or charge density of ion decreases [1] so polarisation/distortion of anion/nitrate decreases [1]
- (c) (i) $\text{Li}_2\text{CO}_3 \longrightarrow \text{Li}_2\text{O} + \text{CO}_2$ [1]
 - (ii) radius of Li ion/Li⁺ is less than that of Na ion/Na⁺ (or polarising power of M⁺ is greater) [1]
 - (iii) Brown/orange fumes/gas would be evolved *or* glowing splint relights [1] Since the nitrate is likely to be thermally unstable *or* decomposes (just like the carbonate) *or* the balanced equation: $2\text{LiNO}_3 \longrightarrow \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$ [1] [4]

[Total: 8]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	43

5 (a) Alkanes are non-polar *or* have no dipole *or* C–H bonds are strong or C and H have similar electronegativities

[1]

[1]

(b) (i) (free) radical substitution *or* substitution by homolytic fission

[1]

(ii) initiation: $Cl_2 \longrightarrow 2Cl^{\bullet}$ propagation:

[1]

 $Cl^{\bullet} + C_2H_6 \longrightarrow C_2H_5^{\bullet} + HCl$ $C_{2}H_{5}^{\bullet} + Cl_{2} \longrightarrow C_{2}H_{5}Cl + Cl^{\bullet}$ $C_{2}H_{5}^{\bullet} + Cl^{\bullet} \longrightarrow C_{2}H_{5}Cl + Cl^{\bullet}$ or $Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_{2}$ etc

[1]

termination:

[1]

all 3 names [1]

(iii)

(1 <u>11)</u>	
structural formula of by-product	formed by
CH ₂ CI–CH ₂ CI (or isomer)	further substitution
CH ₃ CH ₂ CH ₂ CH ₃	(termination of 2 ×) C₂H₅°
CH ₃ CH ₂ CH ₂ CH ₂ CI (or isomer)	substitution of C₄H₁₀ by-product

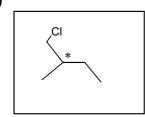
[3]

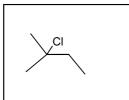
accept in the "formed by" column the formulae of radicals that will produce the compound in the "by-product" column, or the reagents, e.g. C₄H₉• + C*l*₂ or C₄H₉• + C*l** or $C_4H_{10} + Cl_2$ (giving $CH_3CH_2CH_2CI$).

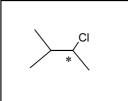
do not allow anything more Cl-substituted than **di**chlorobutane.

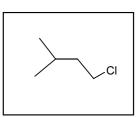
N.B. C_2H_5Cl is the **major** product, not a **by**-product, so do not allow C_2H_5Cl .

(iv) J/K = 2.3 : 1 or 7:3 or 21:9


[2]


(reason: straightforward relative rate suggests 21:1, but there are 9 primary to 1 tertiary, so divide this ratio by 9. 21/9 = 2.33)


allow [1] mark if J/K ratio is given as 21:1;


[10]

(c)

4 isomers 4 × [1]

[1] + [1]

[max 5]

[Total: 16]

2 chiral atoms identified correctly, even in incorrect structures

	Ĭ			GCE A LE	EVEL – October/Nove	mber 2011	9701	43	
6	(a) ((i)			(only) one to contain n ontains CO₂H <i>or</i> NH gr	•	amino acid		[1]
	(i	i)		molecule: J , molecule: L ,	polymer: RNA (not DN polymer: starch, cellul (not carbohydrate)	,	r polysaccharide		[1]
					(1111)				[2]
	(b) (i)	Cova	alent bonding					[1]
	(i	i)	Hydr	ogen bonding					[1]
	(ii	i)	Ionic	:/electrovalent l	oonding <i>or</i> disulphide/–	S-S- bonding o	er van der Waals	' forces	[1] [3]
	(c) (i)	Enzy	/mes					[1]
	(i	•	• inc		T decrease; T > 40 °C metal ions <i>or</i> specific, e			points [1] -	+ [1]
			<i>or</i> m <i>or</i> m	etal ions disrup etal ions disrup	ots ionic bonds ot ionic bonds ot –S–S– bonds hydrogen bonds			any one	o [1]
								any one	<i>3</i> [1]
	This	cha	nges	: the 3D structu	ure <i>or</i> shape of the enz	yme <i>or</i> the activ	e site	[ma	[1] x 4]

Mark Scheme: Teachers' version

Syllabus

Paper

[Total: 9]

Page 8

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	43

7 (a)

structural information	analytical technique
three-dimensional arrangement of atoms and bonds in a molecule	X-ray crystallography/diffraction
chemical environment of protons in a molecule	NMR (spectroscopy) only
identity of amino acids present in a polypeptide	Electrophoresis / chromatography / mass spectrometry

[1] + [1] + [1]

[3]

(b) (i) paper chromatography;

The components **partition** between the solvent/moving phase and the water/liquid stationary phase *or* separation relies on different solubilities (of components) in the moving solvent and the stationary water phase. [1]

(ii) thin-layer chromatography.

Separation depends on the differential **adsorption** of the components onto the solid particles/phase $or Al_2O_3 or SiO_2$. [1]

[2]

(c) (i) No. of carbon atoms present =
$$\frac{0.2 \times 100}{5.9 \times 1.1}$$
 = 3.08 hence 3 carbons [1]

- (iii) One bromine is present as there is only an M+2 peak / no M+4 peak or the M and M+2 peaks are of similar height [1]
- (iv) NMR spectrum shows a single hydrogen split by many adjacent protons and 6 protons in an identical chemical environment. This suggests...

two –CH₃ groups and a lone proton attached to the central carbon atom [1]

Empirical formula of **N** is
$$C_3H_7Br$$
 [1]

Hence N is (CH₃)₂CHBr or

[1]

[6]

[Total: 11]

				GCE A LEVEL – October/November 2011	9701	43
8	(a)	(i)	Solu	ble form would be most effective		[1]
		(ii)	-	nce the 'mini-pills'/granules/powder have a larger surfa because it has no protective casing	ace area	[1]
		(iii)		gel coat stops it being broken down while passing stive system/stomach	through the upp	per part of the
			_	e gel coat is stable to stomach acid.		[1] [3]
	(b)		_	is taken quickly/directly to the target accurate dosing can be achieved		[1]
				e drug is taken by mouth it has to pass through the sto Istream. <i>or</i> some is digested/lost to the system	omach/intestine	wall to get into [1] [2]
	(c)	(i)	conc	lensation (polymerisation)		[1]
		(ii)	hydr	ogen bonds <i>or</i> van der Waals'		[1]
		(iii)		ould change the overall shape of the (drug) molecule 'fit' into the active site would be less effective		[1] + [1]
		(iv)	Hydr	rolysis		[1] [5]
						[Total: 10]

Mark Scheme: Teachers' version

Page 10

Syllabus

Paper