UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/33

Paper 3 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	33

Question Sections		Sections	Indicative material		
1 (a)		PDO Recording	I Thermometer readings for all experiments recorded to 0.0 or 0.5°C. (At least one recorded to 0.5°C.)	1	
		ACE Interpretation	II Calculation of all temperature changes correct.	1	
		MMO Quality	Award III for a temperature rise followed by constant temperature (within 0.5°C).	1	
			Award IV and V for a maximum rise within 0.5°C of supervisor.		
			Award IV for a maximum rise within 1.0°C of supervisor.	1	
			Award VI and VII for the experiment 3 temperature rise within 0.5°C of supervisor.	1	
			Award VI for the experiment 3 temperature rise within 1.0°C of supervisor.		[7]
	(b)	PDO Layout	I Axes correct and labelled: temperature change/ T change/∆T and volume/vol/V (of) sodium hydroxide/NaOH/FA 1 and correct units /°C or (°C) or 'in °C'; /cm³ or (cm³) (allow NaOH in cm³)	1	
			II Scales chosen so that graph occupies at least half the available length for <i>x</i> - and <i>y</i> -axes.	1	
			III Plotting – all points accurate to within half a small square and in the correct square.	1	
			IV Draws two straight lines of best fit which intersect.	1	[4]
	(c)	ACE Interpretation	Reads to nearest ½ square to 1 or 2 dp volume of FA 1 and temperature rise from intercept. Do not award if ΔT at intercept (or point) < max ΔT from table unless candidate has clearly indicated the max ΔT is	1	[4]
			anomalous.		[1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	33

	1	1_		_	i
(d)	ACE Conclusions	I	The temperature/temperature change increases as more reaction/more hydrochloric acid/sodium hydroxide reacts/as more water formed.	1	
		II	The temperature/temperature change stays constant/decreases when all acid/limiting reagent has reacted/excess NaOH is added.	1	[2]
(e)	ACE Interpretation	I	Volume used in calculation is 65 cm ³	1	
		II	Heat energy change calculated using candidate's value for ΔT correct to 3 or 4 sf	1	[2]
(f)	ACE Interpretation		$\frac{25 \times 2}{1000} = $ 0.05	1	[1]
(g)	ACE Interpretation	I	Candidate's answer to (e) Candidate's answer to (f)	1	
	PDO Display	II	Correct calculation, conversion J to kJ and negative sign to 3 or 4 sf	1	[2]
(h)	ACE Conclusions	in e cha incr	So that rise in temperature is proportional to increase n energy produced/change in volume gives different change in temperature for same energy produced/ncrease in volume requires increase in energy for same temperature rise.		
(i)	PDO Display	I	Number moles NaOH = number moles HC <i>l</i> (stated or clearly shown)	1	
	ACE Interpretation	II	Calculates or expression for Concentration = 0.05 (ecf from (f)) answer to (c)/1000	1	
			If answer only, award mark if correct to 3 or 4 sf		[2]
(j)	ACE Improvements	(allo	e more concentrated solutions. bw use ≤ 5 cm³ water each time) ore all references to heat energy losses.	1	[1]
(k)	ACE Conclusions	I	Two straight intersecting lines (positive followed by zero gradient).	1	
		II	Same ΔT and V shown as in (b) .	1	[2]
				-	
					l: 2 5]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	33

? (a)	MMO Decisions	(i)	I	Any named mineral acid or formula or (acidified) potassium dichromate Do not allow any reagent suitable for testing cations or more than one reagent.	1	
	PDO Recording	(ii)	II	Tabulates evidence of 3 tests carried out with no repeat headings. Only consider observations with acid or dichromate.	1	
	MMO Collection		III	Bubbles/effervescence in FA 4 .	1	
				Slower effervescence in FA 3 than FA 4 or FA 3 turns green and FA 5 stays orange if dichromate used.	1	
	MMO Decisions			Appropriate test with positive result used to test for either gas.	1	
	ACE Conclusions			All three ions correct from suitable observations. FA3 is a sulfite. FA4 is a carbonate. FA5 is a sulfate. (or correct formulae)	1	[6]
(b)	MMO Collection	(i)	I	FA 4 + FA 6 white ppt and FA 5 + FA 6 white ppt.	1	
				FA 6 + NaOH white ppt, soluble in excess sodium hydroxide.		
			III	Brown gas		
			IV	Gas relights glowing splint.		
			\mathbf{V}	Yellow residue or crackling/decrepitating.		
	ACE Conclusions			Gas identified as oxygen or as NO ₂ from observations.		[6
	ACE Conclusions	(ii)		nd/Pb ²⁺ provided correct observations with FA 6 + NaOH and 6 + FA 5 (sulfate).	1	[1
	MMO Decisions	(iii)	I	Add HC1/H ₂ SO ₄ /KI/K ₂ CrO ₄ /NH ₃ *	1	
	MMO Collection		II	white ppt/white ppt/yellow ppt/yellow ppt/white ppt insoluble in excess.	1	
			allo NH;	not Pb^{2+} in (ii) but one of $A\hat{l}^{3+}$, Ba^{2+} , Ca^{2+} , Zn^{2+} w suitable reagent mark: K_2CrO_4 for Ba^{2+} and R_3 for the other three.		[2
			1 100	vever, observation must be confect for Pb.		L