

BIOLOGY

9700/21 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2016	9700	21

Mark scheme abbreviations:

; R A AW <u>underline</u> max ora ecf I mp	separates marking points alternatives answers for the same point reject accept (for answers correctly cued by the question, or extra guidance) alternative wording (where responses vary more than usual) actual word given must be used by candidate (grammatical variants accepted) indicates the maximum number of marks that can be given or reverse argument error carried forward ignore marking point (with relevant number)
mp	marking point (with relevant number)

glycosidic, peptide, ester, phosphodiester

Page 3	Mark Scheme	Syllabus	Paper	
	Cambridge International AS/A Level – May/June 2016	9700	21	

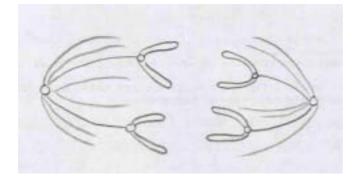
1 must have correct spellings of <u>Plasmodium</u> and <u>Vibrio cholera</u>

feature	malaria	tuberculosis	cholera	
name of pathogen	Plasmodium ;	Mycobacterium tuberculosis	Vibrio cholerae ;	
type of organism	protoctist/protoctistan ; A protist/protozoan/ sporozoan	bacterium	bacterium ; A bacteria	
mode of transmission	by, a vector or (feeding or biting by) <i>Anopheles</i> /mosquito;	via, (airborne) droplets/aerosol(s) (infection) ;	drinking water and food contaminated with human faeces	

[6]

[Total: (6]
-----------	----

2	(a) (i)	phagocytosis / endocytosis ; R pinocytosis I engulfing	[1]
	(ii)	E transcription ; F translation ; A post translation(al) modification	[2]
	(iii)	 R incorrectly qualified vacuole or vesicle (e.g. permanent/large/secretory/Golgi/excretory) I food/pathogenic G (80S) ribosome ; A rough endoplasmic reticulum R RER/rough ER I 70S or any other type of incorrect S as a qualification H Golgi (body/apparatus/complex) ; J mitochondrion ; A mitochondria 	[4]
	(b) 1 <i>n</i> 1	usion of lysosomes with phagosome and diffusion of products of digestion bacteria are, killed/destroyed/broken down/digested ; A hydrolysed	
	2 3 4 5	A cell wall broken down R bacteria are cut up (by hydrolytic) enzymes ; any example, e.g. carbohydrase/lysozyme/protease/nuclease ; killed by, hydrogen peroxide/H ₂ O ₂ /free radicals/AW ; AVP ; e.g. correctly named substrate for enzyme murein/peptidoglycan, polysaccharide(s), polypeptides, nucleic acids, lipids e.g. correctly named bonds broken	


[max 3]

Page 4		4		Syllabus	Paper
			Cambridge International AS/A Level – May/June 2016	9700	21
	(c)	1 2 3 4	<i>idea that</i> only, a few/some/small number/AW, with correct specific (different) T-lymphocytes are specific to different <u>antigens</u> ; (T cell) <u>receptor</u> is, complementary (in shape to antigen); AVP; e.g. this may be during a primary immune response so no memory of e.g. disease state (HIV/AIDS and leukaemia) or treatment where fe T-lymphocytes in the body	cells	[max 2]
					[Total: 12]
3	(a)	(i)	N ciliated ; A pseudostratified I columnar/cuboidal R cilia		[1]
		(ii)	O mucous glands ; A mucus glands/serous glands		[1]
		(iii)	P cartilage ;		[1]
		1 2 3 4 5 coll three I m gly	ore air can enter unqualified more air/oxygen, reaches the, alveoli/gas exchange surface ; more gas exchange/greater absorption of oxygen/excretes more ca dioxide ; AW A maximises oxygen obtained satisfies increased demand for oxygen/AW ; trachea/bronchi/airways, widen/AW ; e.g. dilate/expand/enlarge A diameter of lumen increases reduces resistance to air flow ; R rate of air flow increases reduces resistance to air flow ; R rate of air flow increases lagen has ee <u>polypeptides</u> /a quaternary structure ; ore than one polypeptide unqualified cine is every third amino acid ; I at regular intervals R roughly/approx ole) helix/helical (shape) ; I regular coils' R alpha helix		[max 2] [max 2] [Total: 7]
4	(a)	trai 1 2 3	 Inspiration is an inevitable consequence because stomata open; for diffusion in of carbon dioxide/carbon dioxide required for photos water vapour, diffuses out/moves out down the water potential grad A description of water potential gradient/high to low water potential A vapour pressure gradient/water vapour gradient allow water vapour if it is clear that evaporation has occurred A water evaporates and diffuses out R water (vapour) concentration gradient 		[3]

Page 5		Mark Scheme	Syllabus	Paper
		Cambridge International AS/A Level – May/June 2016	9700	21
(b)	1 2 3 4 5	 <u>adhe</u>sion of water to, cellulose/lining/walls (of xylem vessels); <u>A adhe</u>sive force ref to, hydrophilic/polar, property of <u>cellulose</u> (fibres); <u>A hydrophilic/polar</u>, parts of <u>lignin</u> <u>cohe</u>sion between water molecules; <u>cohe</u>sive force maintains column of water/prevents water column breaking/AW; <i>ref. to</i> transpiration pull/AW; I transpiration <i>unqualified</i> 		[max 3]
(c)		mp3 – units for rates of transpiration must appear once correctly in the whole answer to award this point		
	1 2 3	rate (of transpiration) of all trees is 0 at, $06.00/\text{start}$; A no transpiration increase and decrease (<u>in all three</u>); A peak highest rates: emergent trees at 14.30 at 8.5 kg h^{-1} canopy trees at 14.30 at 3.5 kg h^{-1} suppressed trees at 13.00 at $1.6-1.7 \text{ kg h}^{-1}$; <i>must have units at least once</i> <i>accept kg/h or kg per hour</i>		
	4 5	emergent trees (always) have highest rate or suppressed trees have rate ; A emergent trees have higher rate than, canopy and suppressed, t rate of emergent trees is, much/AW, higher than rates for canopy a	rees	
	6	suppressed trees ; emergent trees have, steeper/steepest, <u>increase</u> in (transpiration) A emergent trees have, steeper/steepest, <u>decrease</u> in (transpiration)		[max 4]
(d)	foli	owing factors may be given in answers, any three of these factors =	1 mark	
	hui ter wir siz wa <i>tra</i> <i>suj</i> <i>acid</i> <i>difi</i> 1 2 3 4 5	nt, intensity/wavelength I 'more light' midity nperature ad speed/air movement e of tree/height/area of leaves ter availability/depth <i>or</i> length of roots <i>nspiration rate for emergent trees is higher because accept ora for</i> <i>pressed trees</i> <i>cept vapour pressure gradient/water vapour pressure gradient/wate</i> <i>fusion gradient for water potential gradient</i> high(er) light intensity for emergent trees increase in stomatal aper A more sunlight A stomata open more I more stomata open lower humidity for emergent trees so steeper water potential gradiet A description of water potential gradient higher temperature/AW, for emergent trees so higher rate of, evaporation/diffusion; ora higher wind speed for emergent trees so, steeper water potential gradient/lower humidity; ora A <i>ref. to</i> diffusion shells/descriptions of water potential gradient emergent trees have longer roots so take up more water;	er vapour ture ; ora ent ; ora	
	6	emergent trees have more leaves so, greater surface area/more si per unit area (of leaf);	lomala	[max 4]
				[Total: 14]

Page 6			Paper
	Cambridge International AS/A Level – May/June 2016	9700	21

5 (a) (i) if draw other stages mark first one only – either left to right or top to bottom

(b)

	betv V sł spin	chromatids/daughter chromosomes, drawn as single structures ween equator and poles ; naped, chromatids/daughter chromosomes, in correct orientation ; idle (fibres) attached to all four, centromeres/kinetochores/apex, and trioles ; R if these extend between chromatids	[max 3]
(ii)	1 2 3 4	attach to the, centromeres (at prophase) ; A kinetochores I <i>if attach at metaphase</i> attach to, centrioles ; A centrosome/MTOC arrange the chromosomes on the, equator/metaphase plate ; pull/move, (daughter) chromosomes, apart/to the <u>poles</u> ; A separates <i>for moves apart</i> A (sister/identical) chromatids I ends R homologous chromosomes	[max 2]
(i)	1 2 3 4 5 6	produces/makes/synthesises, haemoglobin ; I fills up produces/makes/synthesises, carbonic anhydrase ; I fills up loss/AW, of the nucleus ; loss/AW, of (named) organelles ; e.g. ribosomes/(R)ER/mitochondria becomes biconcave/described ; AVP ; e.g. cell surface/antigens/named antigens <i>ref. to</i> cytoskeleton	[max 3]
(ii)	ce// 1 2	Y remains/stays as a, stem cell ; divides/undergoes mitosis ; I <i>ref. to</i> becoming a type of blood cell/platelet R if it becomes a cell other than a blood cell/platelet	[max 1]

Ра	ge	7		Mark Scheme	Syllabus	Paper
				Cambridge International AS/A Level – May/June 2016	9700	21
	(c)	(i)	13	.5 ;		[max 1]
		(ii)	1	low(er) <u>partial pressure</u> of oxygen (at high altitude);		
			2	A pO ₂ /ppO ₂ less oxygen in, inhaled air/lungs/alveoli ;		
			2	so haemoglobin, is not fully saturated/has lower saturation (wi	ith	
			-	oxygen) (than at sea level)/lower affinity for oxygen ;		
			4	idea that more red blood cells so, higher concentration of/mor haemoglobin;		
			5	allows, same/similar/enough, volume of oxygen to be transpo blood as at sea level;	orted in the	
			6	volume of oxygen transported in the blood is less ;		
			7	less oxygen for (aerobic) respiration/lack leads to anaerobic respiration ;		
			8	any consequence, e.g. fatigue, altitude sickness ;		[max 4]
						[Total: 14]
6	(a)	<i>flui</i> pho		nolipids (and proteins), move/AW ;		
		то	said			
				s/glycoproteins, scattered/AW (in the phospholipid bilayer);		
				rent types of proteins		
		Гра	atter	n unqualified		[2]
	(b)	7 n	m;	A any size or range within 6 nm and 10 nm		
				A 7 nanometres		[1]
	(c)			terol;		
				rated fatty acids ; A phospholipid tails		
				ydrate chains added to protein(s)/glycoproteins ; saccharides for carbohydrate chains		
				ydrate chains added to lipids/glycolipids ;		
		gly	coca	alyx ;		
				el protein(s)/AW ; A aquaporin(s) ;		
				proteins/AW; eral/extrinsic, proteins;		
				nent to, cytoskeleton/microfilaments ;		
				or(s);		
		ant AV		n(s);		[max 4]
			,			
						[Total: 7]