CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9700 BIOLOGY

9700/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

Mark scheme abbreviations

; separates marking points

I alternative answers for the same point

R reject

A accept (for answers correctly cued by the equation, or by extra guidance)

R reject

A accept (for answers correctly cued by the question, or by extra guidance

AW alternative wording (where responses vary more than usual)

<u>underline</u> actual word given must be used by candidate (grammatical variants

accepted)

max indicates the maximum number of marks that can be given

ora or reverse argument

mp marking point (with relevant number)

ecf error carried forward

I ignore

AVP alternative valid point

1	(a)	Α	right ventricle;		A r. ventricle	R RV	
		B I R	vena cava; superior/upper/ if other terms us		A vena cavae wer/posterior		
		С	atrioventricular r	node;	A AVN		
		D	coronary arteries	S;	A coronary artery I coronary vessels	A coronary capillaries	
		E	bicuspid/left atri	oventricul	ar/mitral (valve);		[5]
						Γ	Total: 5]
2	(a)	1	cilia, qualified ;	R cilia kil	led R hairs for d		
		2	ref. to presence	of, scar tis	ssue/scarring ; BOD re scarred (idea is, so	sent/destroyed/damaged scar ar tissue formation/more connec	tive
			note idea of sca		,	d epithelium = 2 marks	
		3	idea of affecting	, coordinat A cilia pa		ronous rhythm, (of cilia) ;	
		4		A if state A ecf if 'h ed (effectiv	ed that excess mucus nairs' instead of cilia vely)/accumulates;	for mp 1	
		5	idea that, bacter trapped in mucu	•	<i>ussis Bordetella </i> pat	hogens, accumulate (in airways)/	are
				A mucus	, good growth mediu	m for pathogens / AW	[max 3]
	(b)	mu	cous gland ;	A mucou	ıs glands		[1]
	(c)				n given (e.g. faecal-o n unpasteurised milk	ral/contact/sexual transmission)	= 0
		1	aerosol/droplet,	infection ;	;		
		2 3	infected/AW, pe	erson, cou	<i>infected'/'uninfected</i> ghs/breathes/spits/ ihales/inspires/brea	talks/sneezes;	
		2/3	3 allow one mark	if mps 2 ar	nd 3 given with no re	ference to, infected/uninfected	
		4		•	eria <i>l B. pertussis</i> , in, a air' <i>if mp 2 gained</i>	airborne droplets/droplets in air;	[max 2]

Mark Scheme

Cambridge International AS/A Level – May/June 2015

Paper 22

Syllabus

9700

Page 3

		Cambridge International AS/A Level – May/June 2015 9700 22					
(d)	(i)	1 DNA/gene/MUC5AC, unwinds/AW; I unzips					
(u)	(')	2 H-bonds break between, (complementary) bases/base pairs/strands;					
		I unzips					
		3 one / a, strand, acts as template / (complementary) copied;					
		I ref. to, sense/coding and antisense/non coding					
		4 ref. to (involvement of) RNA polymerase;					
		I ref. to direction of, movement/strand formation					
		5 (free) complementary RNA nucleotides added;					
		A described in terms of correct base-pairs (C with G and A with U minimum)					
		6 step-by-step/sequentially/AW;					
		7 sugar phosphate backbone sealed/phosphodiester bonds formed;					
		A sugar phosphate backbone formed					
		8 (product is) messenger RNA/mRNA; A primary transcript					
		9 AVP ; e.g. transcription factors required to initiate transcription					
		RNA polymerase binds to promoter (sequence)					
		helicase unwinds					
		ref. to activated (RNA) nucleotides					
		ref. to proof reading (transcription ends at) transcription terminator [max 4]					
		(transcription ends at) transcription terminator [max 4]					
	(ii)	Golgi (body/complex/apparatus);					
	(,	A RER/rough ER/rough endoplasmic reticulum					
		one of					
		transport/movement, to cell (surface) membrane (from Golgi);					
		A through cytoplasm (for Golgi or RER)					
		A transport to Golgi <i>if RER given in mp1</i>					
		ref. to bulk transport, across cytoplasm/to cell surface membrane;					
		4 ref. large size and difficulty of movement across, cell/cell surface membrane;					
		5 it, functions extracellularly/is released to the outside of the cell/is secreted;					
		I ref. to exocytosis as it is in the question [max 2]					
(e)	1	shortness of breath/dyspnea/difficulty breathing/restriction of airflow;					
(0)	-	A rapid breathing R heavy breathing					
	2	chronic/persistent/AW, cough/coughing; I cough, blood/mucus					
		A constant coughing A smoker's cough					
	3	chest tightness; A chest pain R heart pain					
	4	wheezing;					
	5	fatigue/weakness;					
	6	difficulty, when exercising/with physical activity/with mobility;					
	7	more prone to/frequent, chest/respiratory/named, infections;					
	8	barrel (shaped) chest;					
	9	cyanosis (blue, face/fingers)					
	10	AVP; e.g. weight loss/anorexia					
	4	swollen, ankles/feet					

Mark Scheme

Page 4

[Total: 16]

[max 4]

Syllabus

Paper

not excess mucus as this is in the question

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

3 (a) same, water potential $/\Psi$ (inside + outside) / no water potential gradient;

A same solute potential I osmotic potential

(so) no, net/overall, movement of water (molecules);

A osmosis does not occur

[2]

(b) for two marks match correct plasma component and, mechanism/membrane component if no mechanism given

plasma component ;	mechanism ;	membrane component ;
oxygen carbon dioxide steroids/steroid hormones	(passive) diffusion A movement from high to low concentration	(phospho)lipid bilayer/ hydrophobic core (of membrane)
glucose amino acid(s) named amino acid mineral/inorganic, ions named ion e.g. sodium ions/Na ⁺ , magnesium ions/Mg ²⁺ chloride ions/C <i>l</i> ⁻ , hydrogen ions hydrogen carbonate ions/HCO ₃₋ phosphate ions/HPO ₄ ²⁻ potassium ions (K ⁺)	facilitated diffusion; A active transport A cotransport	transport(er)/carrier/ integral/intrinsic/ transmembrane, protein; A channel protein for facilitated diffusion A pump protein for active transport

A urea, with any of the three mechanisms and relevant membrane component to match the mechanism stated [3]

(c) (x) 1000 ;; A (x) 947 / 947.4 or 1053/1052.6 if units given = one mark only

if incorrect allow one mark for correct length measured $9/9.5/10 \,\text{mm}$ and knowledge of formula is correct (magnification = image length/actual length – this can also be seen by workings e.g. $9.5 \,\text{mm} \div 9.5 \,\mu\text{m}$) but incorrect conversion factor used for final calculation

[2]

- (d) feature = one mark, with appropriate explanation = one mark
 - F red blood cells/haemoglobin, close to body cells;
 - F (capillary) endothelium/capillary wall, one cell thick/thin; A epithelium
 - **E** short distance/AW (for oxygen to move to cells);
 - F ref. to, diameter/size, red blood cell and capillary (lumen) similar;
 - E slows down flow (to allow sufficient oxygen to move out)/short distance (for oxygen to move to cells);

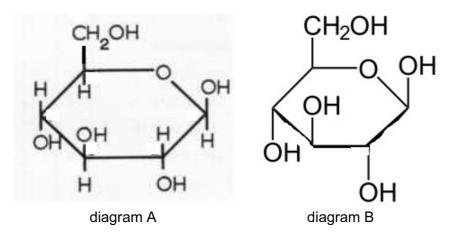
[max 2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

(e) no/fewer, gaps/fenestrations/pores, in endothelium/capillary wall;A spaces

ref. tight junctions between (endothelial) cells ; **A** epithelial cells *idea that* cells wrap round/fewer cells make up capillary wall, so reduces (endothelial) cell-cell contact ;

idea of layer around capillary/basement membrane, impermeable;


[max 1]

[Total: 10]

4 (a) either diagram A or B below (or more detailed – e.g. all carbons and all bonds shown in diagram A);;

A CH₃0 for CH₂OH

I incorrectly numbered carbons

if incorrect (e.g. If one or more H missing from the ring in diagram A **or** if an H added to diagram B ring) allow one mark if:

- hexose ring with oxygen shown in correct position <u>and</u>
- CH₂OH group in correct position <u>and</u> OH groups of ring in correct position.

[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

(b) (i) accept <u>T. maritima</u> or **T** and <u>A.tumefaciens</u> or **A** throughout for the β-glucosidases accept **T** if stated as **B** (as long as **A** is clearly mentioned)

if only **A** or **T** stated, look for comparative phrase

compare optimum temperatures

- 1 optimum temperature, **A** lower (than **T**)/**T** higher (than **A**);
 - A maximum activity A is at a lower temperature
- 2 $40^{\circ}C(A) \vee 85^{\circ}C(T) / A lower by 45^{\circ}C$;
- 3 one difference in shape of curve before or after optimum;
 - e.g. after optimum, **T** does not have the less steep decrease after the initial steep decrease (unlike **A**)

before optimum, steepest increase for **A** is at the lower temperatures, (unlike **T**)

compare activity below and above 55 °C

- 4 below 55 °C, **A** has a high<u>er</u> activity / above 55 °C **A** has a low<u>er</u> activity, (than **T**); ora
 - A has a higher activity at low(er) temperatures <u>and</u> a lower activity at high(er) temperatures ora
- 5 comparative data to support mp 4;

compare temperature ranges of activity

- 6 temperature range for activity is greater for A; ora
- 7 (A) spans 80 °C v (T) spans 65 °C; A (A) 10–90 °C v (T) 30–95 °C

compare **L** for both

- 8 A has a lower, L/lowest temperature for (detectable) activity or ora L is 20 °C lower for A; A 10 °C (A) v 30 °C (T);
- **9** (at **L**), A (relative) activity = 35%, **T** = 10%;

compare **H** for both

- 10 T has a higher, H/highest temperature for detectable activity or ora H is 5 °C higher for T; A 95° (T) v 90 °C (A);
- **11** (at **H**) (relative) activity = 4%, **T** = 60%;

if mp 10 data given to support mp 1, then CON = no marks for mp 1 or 10

[max 4]

- (ii) 1 primary structure, dictates, folding of the polypeptide chain/tertiary structure;
 - A idea that differences in primary structure leads to differences in, secondary/tertiary, structure

A in terms of folding to give the active site *similarity*

- 2 same/(very) similar, (shape of) active site;
- 3 active site (shape) is complementary to/AW, substrate/cellobiose; R matches A ES complex forms

differences

- 4 differences in, side-chain/R-group, interactions/AW;
- qualified; e.g. differences in, numbers/types, of bonds differences in bonding to give different stabilities
 R different bonds without further qualification
 R peptide bond
- 6 suggestion for thermal stability of **T**; e.g. more bonds/more of a named bond type
- 7 suggestion of how active site may work in different ways;
 - e.g. at lower temperatures, **T** induced fit mechanism may mean active site does not mould fully round substrate [max 4]

[Total: 10]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

5 (a)

A reverse wording for both mark vertically/one mark each correct column

description of event	outcome for the individual	production of memory cells / yes or no	precise type of immunity acquired by individual
individual P is injected with a live, weakened disease-causing organism	individual P does not become ill from the disease and has long-lasting protection from the disease	yes	artificial active
individual Q is exposed to a disease-causing organism and is immediately injected with a specific antibody	individual Q does not become ill from the disease but suffers from the disease a year later	no	artificial passive

[2]

(b) bone marrow; A stem cells/myelocytes I white blood cell

- [1]
- (c) (i) 1 healthy body cells, (recognised as) self/have self-antigens; A non-foreign
 - 2 cancer(ous)/tumour, cells, (recognised as) non-self/have non-self antigens;
 A foreign
 - 3 idea that changes occur to structure of cell surface membrane of, cancer(ous)/ tumour, cells;
 - 4 phagocytes have receptors for, non-self/foreign, antigens **or** phagocytes have receptors for antibody complexed to non-self/foreign antigens;

[max 2]

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

- (ii) 1 uncontrolled/AW, mitosis/(mitotic) cell division/cell replication/cell cycle; either
 - 2 one example of a change occurring in a healthy cell

e.g. proto-oncogene to oncogene

mutation of/switching of, tumour suppressor gene uncontrolled growth

increase in growth prote

increase in growth proteins

shorter interphase (of cell cycle)

(rapid) DNA replication

cells do not respond to signals (from other cells)

or

further detail of tumour formation;

e.g. cells immortal/no apoptosis/no programmed cell death

no contact inhibition/cells continue to grow when they contact other cells cell cycle checkpoints not controlled

abnormal/AW, mass of cells formed

undifferentiated/unspecialised, cells/tissue/mass

cells do not function (as tissue of origin)

[2]

[Total: 7]

- 6 (a) (i) (a) habitat;
 - (a) population;

producers/organisms;

[3]

(ii) (a) niche;

(an) ecosystem;

[2]

- (b) (i) energy losses from
 - 1 reflection (from leaf surface);
 - 2 idea that some light, passes through (leaf)/misses chloroplasts/strikes non-photosynthetic tissue;

A suggestion that cell walls may not allow all of light through

- 3 heating plant; I lost as heat to surroundings A converted to heat
- 4 evaporation; A transpiration
- 5 not all light (reaching chlorophyll) is, the right wavelength (for photosynthesis)/AW/ absorbed by chlorophyll;

A idea that only a proportion of light energy is useable

A absorbed and, lost as phosphorescence/lost as luminescence/re-emitted

- **6** ref. to photosynthetic process inefficient ; **A** loss of heat energy <u>during</u> <u>photosynthesis</u>
- **7,8** AVP ;; e.g. ref. to photorespiration

ref. to factors that limit photosynthesis

[max 3]

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

- (ii) 1 increased production of / more, biomass / plant matter / named (e.g. carbohydrate / cellulose / starch / oils); R more plants I more crop I food
 - 2 (so) more energy / more energy stores;

A more chemical energy produced

A higher energy

A suggestion that high PE crop may be more energy dense

- 3 more crop / greater yield, per unit, area / volume / time; A each year
- 4 idea of (comparatively) less space required (for growing);
- 5 ref. to supplying increasing demand for, food / fuel;
- 6 more, profit (for farmers) / economic / AW; I cheaper

7 AVP; e.g. efficient use of carbon dioxide [max 2]

(iii) credit all valid answers - this list is not exhaustive

e.g. compound e.g. function of compound

amino acids production of proteins (for cell growth);

A provide energy/for respiration

proteins cell division/mitosis/increase in cell number/

increase in, biomass or yield/(cell) membranes;

A reproduction A cell cycle

A (tissue) repair

A provide energy/for respiration

enzymes synthesis of, macromolecules or organic molecules/

anabolic reactions/for photosynthesis/for

respiration; [max 2]

A named molecules e.g. carbohydrates/amino

acids/proteins/lipids/nucleic acids

(organic/nitrogenous) bases component/synthesis of, nucleotides

component of, DNA/RNA/nucleic acids;

nucleotides component/synthesis of, DNA/RNA;

DNA ref. genes/genetic material/coded information/

genetic information, (for protein synthesis);

RNA ref. transcription/translation/protein synthesis;

(some) phospholipids (for cell) membranes; **R** lipids

ATP synthesis/anabolic reactions/active transport/

translocation/described;

A provide energy for reactions

chlorophyll photosynthesis/light (dependent) stage;

NADP (in) photosynthesis/light (dependent) stage;

NAD (involved in) respiration;

FAD (involved in) respiration;

auxin growth hormone/cell elongation/cell division;

cytokinin growth hormone/root growth;

[Total: 12]