MARK SCHEME for the October/November 2012 series

9700 BIOLOGY

9700/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	21

Mark scheme abbreviations:

Mark schem	le abbreviations:
•	separates marking points
1	alternative answers for the same point
R	reject
Α	accept (for answers correctly cued by the question, or by extra guidance)
AW	alternative wording (where responses vary more than usual)
<u>underline</u>	actual word given must be used by candidate (grammatical variants excepted)
max	indicates the maximum number of marks that can be given
ora	or reverse argument
mp	marking point (with relevant number)
ecf	error carried forward
I	ignore

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	21

1

(a) one mark per row penalise once for stated ecf and then mark to max 4

[6]

	name of organelle	function		
Α	cell surface membrane	control of movement of substances into and out of the cell		
в	nucleolus	production of, ribosomes / rRNA / tRNA ;		
С	mitochondrion A mitochondria	one from ; <u>aerobic</u> respiration <u>ATP</u> synthesis/ production / AW link reaction Krebs cycle oxidative phosphorylation R produces energy / ATP energy		
D	smooth endoplasmic reticulum R SER or smooth ER	lipid / sterol / cholesterol / steroid, synthesis ; <i>ecf if SER, or Golgi is named organelle</i>		
E	rough endoplasmic reticulum R RER or rough ER	one from ; protein / polypeptide, synthesis translation modification of protein / described (e.g. folding, glycosylation) protein transport (to Golgi) <i>ecf if RER</i>		
F	Golgi (body / complex /apparatus)	one from ; modification of protein glycosylation / described modification of lipid pack(ag)ing (of), protein / lipids production of, (Golgi / secretory) vesicles / lysosomes <i>ignore</i> synthesis of protein <i>allow ecf if smooth endoplasmic reticulum</i>		
G	lysosome or Golgi / secretory, vesicle	contains /storage of, hydrolytic / digestive, enzymes <i>or if Golgi vesicle</i> transfer / transport, of, protein / lipids ;		

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	21

(b) max 3 if only structure or only explanations given

polysaccharide;

chains of α -glucose (residues) ; only need α once α 1–4 glycosidic bonds / links ;

branches ; (because of) α 1–6 glycosidic bonds ; only need glycosidic once

idea that many 'ends' to easily, add / remove, glucose ; compact / AW ; insoluble ; will not affect, water potential / ψ ; AW AVP ;

[max 4]

[Total: 10]

- 2 (a) (i) 1 diffusion through (freely permeable) cell wall;
 - 2 membrane is partially permeable ; A selectively
 - 3 osmosis across membrane (into cell)
 - 4 (only) some water may pass between phospholipids (across membrane);
 - 5 movement across membrane facilitated by aquaporins ;
 - 6 ref. down water potential gradient / from high water potential to low water potential; A from a higher / to a lower, water potential *if in context*
 - 7 AVP ; e.g. further detail about aquaporin (hydrophilic channel) [max 3]
 - (ii) 1 increases permeability of membrane to water ;
 - 2 *idea that* osmosis across bilayer does not supply cell rapidly enough with water (that needs to pass on to surrounding cells);
 - 3 idea that phospholipids are relatively impermeable to water ;
 - *idea that* water cannot pass / only some water passes, through <u>hydrophobic</u>
 region of membrane / AW ; [max 1]
 - (b) pathway via, cells of cortex / cortical cells, and endodermis / endodermal cells;

symplast pathway, described as cytoplasm <u>and</u>, plasmodesmata / vacuole(s);

(out of cell to) apoplast pathway, described as cell wall pathway ;

Casparian strip / suberised cell wall, of endodermis, impermeable to water ; (so) pathway only via, symplast / cytoplasm ;

AVP ; e.g. reference to pericycle reference to passage cells of endodermis vacuolar pathway *(unless given in mp 2)*

[max 3]

	Page 5		Mark Scheme	Syllabus	Paper
			GCE AS/A LEVEL – October/November 2012	9700	21
(c)	(i)	stom	nata are open (to absorb carbon dioxide for photosyntl	hesis) ; ora	[1
	(ii)	plan A ex	of transpiration, (almost) always / AW, higher / higher hts ; ora <i>xpressed in terms of water loss</i> ight only cuticular transpiration / no stomatal transpirat	-	utant
			a that during day stomatal transpiration same for both ;		
			differences because of less effective cuticle ; parative data quote ;		[max 3]
					[Total: 11]
(a)	(i)		(DNA) replication / synthesis / described ;		12.
		L – (cytokinesis / cytoplasmic division / cell division ;		[2]
	(ii)	3;			[1]
	(iii)		ain the same / stays constant / stay at 46 / AW ; ignore	e description of e	
		OCCL	urring before and during mitosis		[1]
(b)	pro pro	tein / ductio	otion (of specific genes) ; A reference to gene switching polypeptide, synthesis ; A translation on of haemoglobin ; letail ; e.g. assembly of quaternary structure	g	
	(pro	oducti	ion of) carbonic anhydrase ;		
			mitochondria / named organelles ; ucleus;		
	ado	pts b	piconcave disc shape ;		[max 3]
(c)			n both primary <u>and</u> secondary (immune) responses ; / specific / AW ;		
	lym	phoc	<u>ytes</u> / <u>B</u> -cells / <u>T</u> -cells / divide (by mitosis) ;		
			<pre>kpansion / described in terms of producing, clone / mail hat different types of immune cell can result</pre>	ny cells ;	
			e mitosis in memory cells (for rapid) secondary respor	ise ;	[max 3]
(d)		elper roto	· / Th, cytokines / interleukins ;		
	acti anti	vate body	B-lymphocytes to, divide / form plasma cells ; A v levels es / AW, phagocyte / macrophage, response ; A angry		to enhanced
				macrophagoo ,	
	-		<i>xic / Tc / T killer / Tk</i> o / kill / AW, infected cells / damaged cells / tumour cell	ls / cells with non	-self

reference AVP ; ; e	GCE AS/A LEVEL – October/November 2012 y / Tm xposed to antigen ; to role in secondary response ; .g. T suppressor cells of suppressor cells	9700	21
already e reference AVP ; ; e	xposed to antigen ; to role in secondary response ; .g. T suppressor cells		
	• • • •		
			[max 3]
			[Total: 13]
ignore re	ference to, first / third / fourth, trophic level		
seconda	y consumer ; A second / 2°, consumer		[3]
level 2 feed 3 there 4 refer 5 refer 0ne 6 any resp	s (only) on ringed seals ; fore limited, food / energy, supply ; ence to ringed seals competing for food / food for seals ence to energy loss, within / between, trophic levels ; A rophic level to the next wo examples of, energy / heat, loss in lower trophic lev ration / movement / digestion / excretion / egestion / inc	shared with, ot approx 90% los els ; e.g. heat lo	hers / named ; ss from oss from,
1 less, 2 more 3 cons 4 stary 5 migr lower tro, 6 incre eithe arroy 7 (so)	food / energy, (for consumers of cod / higher consume e competition for food ; umers / named consumers, of cod feed on other levels ation / decrease in population / extinction(s) (of other sp ation to areas where food is more plentiful ; <i>ohic levels</i> ase in numbers of <i>r</i> , copepods / AW <i>or</i> v worms / AW ; decrease in population of phytoplankton ; <i>only if mp 4 n</i>	; pecies) ; pot scored	[max 3]
	secondar ertiary co l polar level 2 feeds 3 there 4 refer 5 refer one t 5 any t respi decrease 1 less, 2 more 3 cons 4 starv 5 migra 6 incre <i>eithe</i> arrov 7 (so) 6	 level feeds (only) on ringed seals ; therefore limited, food / energy, supply ; reference to ringed seals competing for food / food for seals reference to energy loss, within / between, trophic levels ; A one trophic level to the next any two examples of, energy / heat, loss in lower trophic level respiration / movement / digestion / excretion / egestion / inc decomposers / death but not eaten decrease in population of Arctic cod so higher trophic levels less, food / energy, (for consumers of cod / higher consume more competition for food ; consumers / named consumers, of cod feed on other levels starvation / decrease in population / extinction(s) (of other spiration to areas where food is more plentiful ; ower trophic levels increase in numbers of either, copepods / AW or arrow worms / AW ; (so) decrease in population of phytoplankton ; only if mp 4 m 	 becondary consumer ; A second / 2°, consumer ertiary consumer ; A third / 3°, consumer polar bear is, tertiary / quaternary consumer / top carnivore ; A in fourth / fift level feeds (only) on ringed seals ; therefore limited, food / energy, supply ; reference to ringed seals competing for food / food for seals shared with, ot reference to energy loss, within / between, trophic levels ; A approx 90% los one trophic level to the next any two examples of, energy / heat, loss in lower trophic levels ; e.g. heat log respiration / movement / digestion / excretion / egestion / indigestible parts / decomposers / death but not eaten

[Total: 10]

GCE AS/A LEVEL – October/November 2012 9700	Paper
F (a) closed blood trouble incide blood vessels (A)A(;	21
 5 (a) closed blood travels, inside blood vessels / AW ; double blood travels through the heart twice during one, complete circuit / circu of the body ; AW A pulmonary and systemic, systems / circuits 	lation [2]
 (b) P to right atrium ; Q to (semilunar) pulmonary or aortic valve ; R to, vena cava / pulmonary artery ; S to, septum / <u>wall(</u>s) of ventricles ; 	[4]
(c) (i) 75 (beats per minute) ;;	
<i>if incorrect answer or no answer allow one mark for extraction from Fig. 5.</i> <i>working</i> e.g.10 beats in 8 seconds	2 or for correct
10/8 × 60	[2]
 (ii) max 3 if only description or only explanation given lowest pressure in aorta, is 10.8 kPa / varies between 10.8-11.2 kPa v in l is 0 KPa ; difference between highest and lowest is greater in the ventricle / AW ; 4.8 – 5.2 kPa for aorta, 16.0 kPa in left ventricle ; 	eft ventricle
reference pressure differences (in left ventricle) as a direct result of ventric and diastole ; semilunar / aortic, valve prevents backflow from aorta into ventricle ; (so) no / little, blood in ventricle, when fully contracted / AW ;	cular systole
elastic recoil of artery maintains (diastolic) blood pressure ; AVP ;	[max 4]
(d) (i) coronary arteries ;	[1]
 (ii) insufficient, glucose / oxygen (to, cardiac / heart, muscle); angina; boott attack / myopordial information / pardiag arrest; 	
heart attack / myocardial infarction / cardiac arrest ; description of anaerobic conditions in muscle ;	[max 1]
 (e) coronary (artery) by-pass (graft) operation ; R by-pass unless qualified 	
A described insertion of a (coronary) stent ; A described heart transplant ; angioplasty ; A described	
insertion of a (coronary) stent ; A described heart transplant ;	[max 2]