MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9700 BIOLOGY

9700/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9700	43

Mark scheme abbreviations:

;	separates marking points
/	alternative answers for the same point
R	reject
Α	accept (for answers correctly cued by the question or guidance on the mark scheme)
AW	alternative wording (where responses may vary more than usual)
underline	actual word given must be used by the candidate (grammatical variants excepted)
max	indicates the maximum number of marks that can be given
ora	or reverse argument

ora or reverse argument

	Page 3		Mark Scheme: Teachers' version Syllabus	Paper
			GCE AS/A LEVEL – October/November 2010 9700	43
1	(a)	1	pollution ;	
		2	environment / habitat, change qualified ; e.g. increase in water temperature / change in water pH	
		3	overfishing;	
		4	loss of food / more competition for food ;	
		5	direct human interference qualified ; e.g. pleasure boats	[3 max]
	(b)	varie	ety of / different / total number of, species ;	
		gene	etic diversity of species / AW ;	[2]
	(c)	1	any three from tourism / leisure ;	
		2	economic benefits;	
		3	food for humans;	
		4	ref. resource / species, may have use in future / AW ;	
		5	maintains, food webs / food chains ; A description	
		6	nutrient cycling;	
		7	maintains, (large) gene pool / genetic variation ;	[3 max]
				[Total: 8]

	Pa	ge 4					ers' version		Syllabus	Paper
				GCE	AS/A LEV	EL – Octob	er/November 20 ⁴	10	9700	43
2	(a)	1	re	ef. differer	ntiation / sp	pecialisation	;			
		2	re	ef. <u>Sertoli</u>	cell ;					
		3	fo	orms flage	ellum ;	A tail				
		4	de	etail (of fla	agellum) ;	e.g. microtu	bules			
		5	<u>ac</u>	crosome ;	;					
		6	de	etail (of a	crosome);	e.g. contai	ns enzymes / mo	dified	lysosome	
		7	m	any mitoo	chondria;					[4 max]
	(b)					lthy for unda nhealthy for				
		1		ndamage oper char		ove into low	er chamber or da	amage	d sperm stay in	
		2				ave negative / charged (p	ely charged (prote rotein) ;	eins) o	r damaged	
		3		ndamage ate ;	-		to positive plate /	/ repell	ed by negative	
					<i>ora</i> for da	amaged spei	rm			
		4		ea that ui pididymis	-	sperm whic	h have, moved /	mature	ed, <u>slowly</u> (in	
					ora for da	amaged spei	rm			[3 max]
										[Total: 7]

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – October/November 2010	9700	43
3	(a)	(i)	h۱	/bridoma ;		[1]
-	(-)	(ii)	-	identical (antibodies) or produced by cloning ;		
		()				
			2	variable regions / antigen binding sites, all identical or (antibodies) are specific to one antigen ;		[2]
		(iii)		lark text first		
			1	(four) polypeptide <u>s</u> ; plural		
			2	two heavy and two light chains ; A long and sh	ort	
			3	ref. <u>di</u> sulphide, bridges / bonds ;		
			4	ref. variable regions / binding sites ;		[3 max]
	(b)	(i)	1	HAT cannot be metabolised / AW ;		
			2	HAT inhibits mutant myeloma cells / AW;		[2]
		(ii)	1	mouse spleen cells can metabolise HAT / AW ;		
			2	because they have suitable enzyme;		[2]
		(iii)	1	so that only fused cells survive or unfused myeloma	a cells die ;	
			2	identifies, cells to be cloned / fused cells ;		[2]
	(c)	1	car	be done at home / easy to use / non-invasive ;		
		2	che	eap;		
		3	res	ult produced quickly;		
		4	res	ult likely to be accurate ;		
		5	car	be done early in pregnancy ;		
		6	saf	e to use ;		[4 max]
						[Total: 16]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – October/November 2010	9700	43
4	(a)	1	wat	ter lost by, evaporation / transpiration ;		
		2	no	water uptake (by roots) ;		[2]
	(b)	(i)	1	as water potential increases, oxygen uptake increase must be stated	es;	
			2	levels off (at 5 kPa / at 225 au) ;		
			3	figures; two water potential plus two oxygen uptake	e figures plus kPa	[2 max]
		(ii)	1	succinate converted to oxaloacetate ;		
			2	dehydrogenation / oxidation ;		
			3	NAD, is reduced / accepts hydrogen ;		
			4	(hydrogens move to) ETC ;		
			5	hydrogen splits into protons and electrons;		
			6	electrons pass along ETC ;		
			7	ADP + Pi → ATP ;		
			8	oxygen, receives protons and electrons / is final electrons water ;	tron acceptor, to	[4 max]
	(c)	(i)	1	water leaves mitochondrion ; A other name	d organelle	
			2	by osmosis / down water potential gradient;		
			3	idea mechanical disruption to membranes;		
			4	membranes made of <u>phospholipid</u> (bilayer) ;		
			5	hydrophilic heads / glycoproteins / glycolipids, form f bonds with water ;	ewer hydrogen	
			6	reduces, stability / fluidity (of membrane);		
			7	ref. (proteins with) hydrophilic channels ;		[3 max]

Paç	ge 7		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – October/November 2010	9700	43
	(ii)	1	inner membrane (of mitochondrion) / cristae, site of E	ETC ;	
		2	fewer carriers held in position ;		
		3	fewer electrons pass along ETC ;		
		4	less ATP produced / less energy released;		
		5	less oxygen required to act as electron acceptor;		
		6	protons can move freely through the damaged inner	membrane;	
		7	proton gradient not formed;		
		a	ccept ora for less damaged membranes for marking po	oints 2–7	[3 max]
(d)	1	ext	ensive / deep, roots ;		
	2	lea	ves have small surface area ;		
	3	lea	ves, are curled / are waxy / have bulliform cells / have	hinged cells;	
	4	red	uced stomata numbers / stomata in pits;		[2 max]
					[Total: 16]

Pag	ge 8		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – October/November 2010	9700	43
5 (a)	1	AAV	/2.5T infects more cells than AAV / AW ;		
	2	both	n increase until 20 days ;		
	3	AAV	/2.5T falls after 20 days but AAV remains steady ;		
	4	figur	res; two intensities on a single day		[2 max
(b)	1	infeo	cted cells fluoresce (when luciferin added);		
	2	able	e to identify infected cells;		[2
(c)	1	corre	ect form of (CFTR) protein made ;		
	2	deliv	vered to / inserted into, membrane ;		
	3	acts	as chloride channel ;		
	4	chlo	ride ions leave cell ;		
	5	wate	er leaves cell;		
	6	norn	nal / less viscous, mucus formed ;		
	7		e credit to mention of one symptom reversed ; no blockage of airways / less chance of infections		[4 max
					[Total: 8]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9700	43

6 (a) 86 ;; **A** -86

accept suitable working for one mark e.g. $\frac{1400-190}{1400} \times 100$ or

accept 86.4 for one mark

- (b) 1 drought reduced available food or fewer small seeds produced ;
 - 2 finches with larger beaks survived or finches with smaller beaks died ;
 - 3 able to open tough fruits / ora;
 - 4 able to feed on larger seeds / ora ;
 - 5 tough fruit / size of seed, acted as selection pressure ; [3 max]
- (c) directional / evolutionary ;

selection pressure acts on one extreme (of range); [2]

[Total: 7]

[2]

Pa	age 1	0	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – October/November 2010	9700	43
7 (a)	i) 1	ren	noval / elimination, of waste products ;		
	2	ofr	metabolism ;		
	3	(wł	nich are) toxic ;		
	4	(or) substances excess (to requirements) ;		[2 max
(b)) 1	hor	meostasis / AW ;		
	2	cha	ange in water <u>potential</u> ;		
	3	det	ected by (osmo)receptors;		
	4	in ł	nypothalamus;		
	5	res	ponse via <u>effector</u> ;		
	6	AD	H released ;		
	7	effe	ect on collecting duct ;		
	8	ret	urn to, norm / set point ;		[4 max]
(c)	:) 1	blo	od diverted away from skin ;		

- 2 less sweating ;
- 3 more water retained in body / high water potential in body ;
- 4 less water reabsorbed from collecting duct / AW; [2 max]

[Total: 8]

	Page 11		Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010	Syllabus 9700	Paper 43
			GCE AS/A LEVEL - October/November 2010	9700	43
8	(a)	1	high <u>rate</u> of photosynthesis at <u>430–435nm</u> and <u>655nm</u> wa	avelengths;	
		2	idea of (high) absorption of light at these wavelengths;		
		3	highest rate, at <u>430–435nm</u> ;		
		4	shorter wavelengths have more energy;		
		5	low(er rate) in, middle range / 500-600, of wavelengths	;	
		6	low light absorption here ;		
		7	absorbed light used for photosynthesis;		
		8	in light-dependent stage ;		[4 max]
	4.	<i>(</i>)			
	(b)	(i)	ATP;		101
		(::)	reduced NADP;		[2]
		(ii)	1 ATP provides energy;		
			2 reduced NADP, is reducing agent / provides hydroge	n;	
			3 for converting GP to TP ;		
			4 (ATP used to) regenerate RuBP;		[3 max]
	(c)	proc	ess / photosynthesis, affected by more than one factor ;		
		rate	is limited by the factor nearest its minimum value / AW;		[2]
	(d)	1	enters leaf through (open) stomata ;		
	()	2	by diffusion ;		
		3	substomatal air space ;		
		4	many air spaces in spongy mesophyll ;		
		5	spaces between palisade cells ;		
		6	dissolves in moisture on cell (walls) ;		
		7	enters through cell walls ;		[4 max]
		-	· · · · · · · · · · · · · · · · · · ·		[Total: 15]

	Page 12		Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010	Syllabus 9700	Paper 43
9	(a)	1	chiasma / crossing over ;		
•	()	2	between non-sister chromatids ;		
		3	of, homologous chromosomes / bivalent ;		
		4	in <u>prophase 1</u> ;		
		5	exchange of genetic material / AW; R genes unqual	ified	
		6	linkage groups broken ;		
		7	new combination of alleles;		
		8	independent assortment (of homologous chromosomes) R random assor		
		9	at equator ;		
		10	(during) metaphase 1;		
		11	possible mutation ;		
		12	random mating;		
		13	random fusion / fertilisation of gametes;		[7 max]
	(b)	14	phenotypic variation results from interaction of genotype environment / VP = VG + VE ;	e and	
		15	environment may modify expression of gene(s); must	be stated	
		16	e.g. for size / mass / height ;		
		17	because, food / nutrient / ion, missing or in short supply	; A malnutrition	
		18	named, food / nutrient / ion, (missing or in short supply)	;	
		19	environment may, trigger / switch on, gene; must be	e stated	
		20	ref. low temperature and change in animal colour ;		
		21	ref. high temperature and, curled wing in <i>Drosophila /</i> ge crocodiles ;	ender in	
		22	ref. <u>UV</u> light and melanin production ;		
		23	ref. wavelength of light and, flowering / germination / fru	it colour ;	
		24	other named trigger plus example ;		
		25	environment effect usually greater on polygenes / ora;		
		26	environment may induce mutation affecting phenotype;		[8 max]
					[Total: 15]

Page 13	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9700	43

- 10 (a) 1 nucleotide;
 - 2 adenine + ribose / pentose + three phosphates ;
 - 3 loss of phosphate leads to energy release / hydrolysis releases 30.5 kJ;
 - 4 ADP + Pi ← → ATP (reversible reaction);
 - 5 small packets of energy ;
 - 6 small / water soluble, so can move around <u>cell</u>;
 - 7 used by cells as immediate energy donor;
 - 8 link between energy yielding and energy requiring reactions / AW;
 - 9 high turnover ;
 - 10 two examples of use ; ; e.g. active transport / muscle contraction / Calvin cycle /
 - 11 protein synthesis

[8 max]

- (b) 12 Pyruvate, cannot enter mitochondrion / remains in the cytoplasm ;
 - 13 becomes, hydrogen acceptor / reduced ;
 - 14 by reduced NAD;
 - 15 from glycolysis ;
 - 16 converted to lactate ;
 - 17 lactate dehydrogenase ;
 - 18 allows glycolysis to continue ;
 - 19 no, decarboxylation / CO₂ removed ;
 - 20 single step;
 - 21 reversible reaction / converted back to pyruvate ;
 - 22 by oxidation ;
 - 23 ref. oxygen debt ;
 - ethanol produced;

accept ora for marking points 19–23

[7 max]

[Total: 15]