

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

PHYSICS 0625/42

Paper 4 Extended Theory

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Question	Answer	Marks
1(a)	$\rho = m/V$ in any form OR $(m =) \rho V$ OR $(m =) 9000 \times 7.5 \times 10^{-5}$	C1
	(m =) 0.68 kg accept 680 g	A1
1(b)(i)	W = mg in any form or $(W =) mgOR (W =) 0.68 \times 10$	C1
	(W=) 6.8 N	A1
1(b)(ii)	any one of: weight has direction / mass does not weight is a vector / mass is not weight varies / mass does not mass is amount of matter weight is a force / mass is not	B1
1(c)(i)	$\rho = h \rho g$ in any form OR $(\rho =) \rho / hg$ OR $(\rho =) 560 / (0.027 \times 10)$	C1
	$(\rho =) 2.1 \times 10^3 \mathrm{kg/m^3}$	A1
1(c)(ii)	explains why there is a resultant downward force	B1

Question	Answer	Marks
2(a)	accelerate / increase speed OR decelerate / decrease speed OR stop	B1
	change direction / move in a curve o.w.t.t.e.	B1
2(b)	change of shape OR size	B1
2(c)(i)	F = ma in any form OR $(a =) F/m$ OR $(a =) 3500/1400$	C1
	$(a =) 2.5 \mathrm{m/s^2}$	A1
2(c)(ii)	a = (v - u) / t in any form OR $(t =) (v - u) / aOR (t =) (30 - 0) / 2.5 OR 30 / 2.5$	C1
	(t=) 12 s	A1
2(c)(iii)	friction / air resistance / drag	B1

Question	Answer	Marks
3(a)	suitable fuel for a power station	B1
	any three from five: thermal energy / heat (from fuel) water / steam / gas heated OR steam produced (steam / gas) turns / moves / drives turbine turbine) turns / moves / drives generator correct energy transfers	В3
3(b)	sun is energy source for plants / living matter (to grow) o.w.t.t.e.	B1
	plant / animal (remains compressed) into fuel OR carbon / chemical energy stored / trapped in plant / animal (remains)	B1
3(c)	not renewable (as fuel is consumed)	M1
	could only be replaced over very long time period (e.g. clearly > 50 years)	A1

© UCLES 2017 Page 4 of 10

0020/42	PUBLISHED	2017
Question	Answer	Marks
4(a)(i)	any one of these six: • evaporation: at surface OR no bubbles form) pair 1 • boiling: throughout liquid OR bubbles form) • evaporation: at any temperature OR no heat needed) pair 2 • boiling: at specific temperature OR heat needed) • evaporation: affected by draught/surface area) pair 3 • boiling: not affected by draught/surface area)	B1
	any one pair of points	B1
4(a)(ii)	(it / rate) increases AND {more molecules have enough energy to escape OR break bonds}	B1
4(b)(i)	remains constant	B1
4(b)(ii)	E = m l in any form OR $(E =) m l$	C1
	P = energy / t in any form OR (P =) energy / t	C1
	$(P = 0.095 \times 2.3 \times 10^6 / (12 \times 60) =) 300 \text{ W}$	A1

Question	Answer	Marks
5(a)	 any three of these five: any sensible mention of the sun (as source of energy) (thermal / heat / IR / electromagnetic) radiation white (or clearly implied) surfaces absorb less or don't absorb white (or clearly implied) surfaces reflect more to keep house cooler OR to reduce thermal energy / heat transferred to house 	В3
5(b)	decreases	B1

Page 5 of 10 © UCLES 2017

Question	Answer	Marks
6(a)(i)	diffraction	B1
6(a)(ii)	4 arcs between dashed lines centred vertically at centre of gap	B1
	any 3 wavelengths same as incident wavelengths including wavelength from wavefront in gap	B1
6(b)(i)	wavefronts have smaller angular width OR do not extend as far as dashed lines OR less (angular) spread	B1
6(b)(ii)	increased wavelength OR more spreading	B1
	use of v=f λ OR increased wavelength	B1

Question	Answer	Marks
7(a)	real (answers in any order for 7(a))	B1
	enlarged OR magnified	B1
	Inverted OR upside down	B1
7(b)(i)	1st straight incident ray from close to point object to mirror correctly reflected, $i = r$	M1
	2nd straight incident ray from point object to mirror correctly reflected, $i = r$	A 1
7(b)(ii)	BOTH reflected rays extended back to intersect behind mirror	M1
	BOTH reflected rays extended back in straight lines AND I in correct position AND (labelled OR clearly indicated)	A 1

© UCLES 2017 Page 6 of 10

		2017
Question	Answer	Marks
8(a)	$R_{\rm S}=R_{\rm A}+R_{\rm B}$ in any form OR $(R_{\rm S}=)$ $R_{\rm A}+R_{\rm B}$ OR $(R_{\rm S}=)$ 4 + 8	C1
	$(R_S =)12 (\Omega)$	C1
	$(R_{\rm P}=)1/(1/R_{\rm S}+1/R_{\rm C})$ in any form OR $(R_{\rm P}=)$ $R_{\rm S}$ $R_{\rm C}$ $/$ $(R_{\rm S}+R_{\rm C})$ OR $(R_{\rm P}=)$ $1/(1/12+1/6)$ OR $(R_{\rm P}=)$ $(6\times12)/18$	C1
	$(R_P =) 4.0 \Omega$	A1
8(b)	$V_8 = \text{supply } V \times (8/12) \text{ OR} = 24 \times (8/12)$	C1
	(V ₈ =) 16 V	A1
	OR alternative route	
	$I_8 = \text{supply } V/12 \text{ OR} = 24/12 \text{ OR} = 2 \text{ (A)}$	(C1)
	$(V_8 = 2 \times 8 =) 16 \text{ V}$	(A1)

Question				Answer			Marks
9(a)(i)	B thermi	resistor stor OR light emitting	diode				
	2 correct						В
	3 correct						В
9(a)(ii)	if cold /if cold /if cold /	hot resistance of hot voltage (acro hot voltage (acro hot voltage of in		w			B ²
9(b)	Row	А	В	С	(output of AND)	Х	
	1	0	0	0	0	0	
	2	0	1	0	0	0	
	3	1	0	0	0	0	
	4	1	1	0	1	1	
	5	0	0	1	0	1	
	6	0	1	1	0	1	
	7	1	0	1	0	1	
	8	1	1	1	1	1	
	row 1 of X correct – answer 0						B
	rows 2 ANI	O 3 of X correct –	both answers 0				B [,]
	rows 4–8 o	f X correct – all a	newere 1				B [,]

© UCLES 2017 Page 8 of 10

Question	Answer	Marks
10(a)(i)	clockwise arrows on at least 3 circles	B1
10(a)(ii)	(magnetic) field becomes weaker / decreases (as distance from wire increases)	B1
10(b)(i)	any four from these six: charge flows OR current in solenoid/wire/circuit solenoid becomes magnet/magnetised bolt becomes magnet/magnetised (such that) unlike poles (of solenoid and bolt are) facing o.w.t.t.e. bolt is attracted bolt moves/(door) locks/spring stretched	B4
10(b)(ii)	solenoid OR bolt no longer magnetised OR bolt no longer attracted	B1
	(spring contracts and pulls) bolt back/bolt returns (to original position)/(door) unlocked	B1

© UCLES 2017 Page 9 of 10

Question	Answer	Marks
11(a)	nucleon numbers balance each side of equation	B1
	proton numbers balance each side of equation	B1
	$\begin{bmatrix}0\\-1^{eta}\end{bmatrix}$	B1
11(b)(i)	background radiation OR radiation from the environment	B1
	rocks/ground/buildings/food/space/weapons testing/nuclear accidents or waste/sun/air/radon/argon	B1
11(b)(ii)	random (variation)	B1
11(b)(iii)	clear evidence of subtracting 23 from (original) count	C1
	clear evidence of dividing original / corrected count by 4	A 1
	clear evidence of adding 23 correctly to result after division	A1