MARK SCHEME for the October/November 2012 series

0625 PHYSICS

0625/62
Paper 6 (Alternative to Practical), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE,
GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0625	62

1 Line $10 \mathrm{~cm}(\pm 0.1)$ (accept horizontal or vertical line)
Normal correctly drawn
Angle of incidence at $30^{\circ}\left(\pm 2^{\circ}\right)$
Pins at least 5 cm apart
Any one from:
Thickness of lines (answer must refer to pencil lines, not light rays)
Difficulty in reading protractor to better than 2°
Thickness of pins
[Total: 5]

2 (a) $\theta_{R}=23$
${ }^{\circ} \mathrm{C}$
(b) (i) $\theta_{\mathrm{A}}=63$ and (ii) $\theta_{\mathrm{H}}=14$ (unit not required) ecf θ_{R} from 2(a)
(c) (i) $\theta_{\mathrm{B}}=36$ and (ii) $\theta_{\mathrm{W}}=15$ (unit not required) ecf θ_{R} from 2(a)
(d) Ratios calculated 4.5 and 2.4 ecf 2(b) and 2(c)

Expect NO and ratios too different/not close enough (owtte), matching statement ecf wrong values from 2(b) and 2(c)
(e) Any two from:

Room temperature/draughts/humidity/air conditioning (i.e. environmental factor)
Initial (water) temperature (cold or hot)
Amount of stirring
Time interval
Mass/volume/amount of water/water level
Size/surface area/material of beaker

3 (a) Voltmeter symbol and position correct
(b) Pointer in correct position
(c) (i) $I_{1}=0.84 \mathrm{~A}, I_{2}=0.33 \mathrm{~A}, I_{3}=0.50 \mathrm{~A}$, all correct no significant figures penalty Unit at least once and not contradicted
(ii) No mark awarded
(iii) Sensible comment about experimental inaccuracy e.g. difficulty in reading meter/scale or meter has a zero error

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0625	62

(d) Circuit: correct symbol for variable resistor (not potential divider)

Variable resistor in a correct position
(e) Workable solution, e.g. short circuit each in turn/exchange of lamp from other circuit branch/put lamps in parallel and check/use voltmeter to check pd across bulbs plus what is observed
[Total: 7]

4 (a) Table: $u v$ values $894,990,1090,1155,1194$. Accept 3 or 4 significant figures. cm^{2} and cm
(b) Graph:

Axes correctly labelled and scales suitable
($100 \mathrm{~cm}^{2}=2 \mathrm{~cm}$ on y-axis and $5 \mathrm{~cm}=2 \mathrm{~cm}$ on x-axis)
All plots correct to $1 / 2$ small square
Good line judgement
Thin, continuous line (penalise 'blobs')
(c) (i) Triangle method used and shown

Using at least half of line
(ii) $f=14-16$ (accept numbers rounding to 14/16)

2 or 3 significant figures and unit

5 (a) l value $10.5(\mathrm{~cm}) / 105(\mathrm{~mm})$
(b) l value $52.5 / 525$ (ecf)

Both in $\mathrm{cm} / \mathrm{mm}$ with unit stated at least once
(c) Use blocks/protractor/set square; move ruler close to bob/lower bob
(Can score the mark from a well-drawn diagram)
(d) T values $1.45,1.47,1.43,1.44,1.46$
T values consistent 2 or 3 significant figures
Table: $\mathrm{cm}, \mathrm{s}, \mathrm{s}$
(e) Description: little or no effect (owtte) allow ecf from 5(d)

Justification: T values very similar (owtte)

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2012	0625	62

(f) Any one from:

Reduces human reaction error
Gives a more accurate value of T
T is too small/oscillations are too quick
Gives an average value (of T)

