MARK SCHEME for the October／November 2014 series

0610 BIOLOGY

0610／33
Paper 3 （Extended Theory），maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

Abbreviations used in the Mark Scheme

- ; separates marking points
- / separates alternatives within a marking point
- R reject
- I ignore (mark as if this material was not present)
- A accept (a less than ideal answer which should be marked correct)
- AW alternative wording
- underline
words underlined must be present
- max indicates the maximum number of marks that can be awarded
- mark independently the second mark may be given even if the first mark is wrong
- A, S, P, L Axes, Size, Plots and Line for graphs
- O, S, D, L Outline, Size, Detail and Label for drawings
- (n)ecf (no) error carried forward
- () the word / phrase in brackets is not required, but sets the context
- ora or reverse argument.
- AVP
any valid point

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

Question	Answer			Marks	Additional Guidance
1 (a)					mark nucleus and next 3 answers
	structural feature	animal cell	plant cell		
	cell wall	\times	\checkmark		
	nucleus	\checkmark	\checkmark;		
	(cell) membrane	\checkmark	\checkmark;		
	cytoplasm	\checkmark	\checkmark;		
	chloroplast	*	\checkmark;		
	(large) vacuole	\times	\checkmark;		R chlorophyll
	vacuolar sap	\times	\checkmark;		
	vacuolar membrane/ tonoplast	\times	\checkmark;		
	nuclear membrane	\checkmark	\checkmark;		
	nucleolus	\checkmark	\checkmark;		
	max 4				

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

(b)	water moves (in) by osmosis; down a water potential gradient/from high water potential to low water potential; through partially permeable membrane; (both cells/vacuole) enlarge/swell/increase in volume; animal cell bursts; plant cell becomes turgid/AW;	max 4	I water concentration A semi/selectively A cell wall prevents bursting
(c) (i)	phloem;	1	
(ii)	(transport of sucrose out of the leaves) is low(er) in, B/magnesium-deficient plants; ORA any data quote about \mathbf{B}; (sucrose concentration in the leaves) is high(er) in, $\mathbf{B} /$ magnesiumdeficient plants; ORA any data quote about B;	4	assume "it" refers to B $\mathrm{A}-\mathrm{B}=2.4-2.6, \mathrm{~A}$ is $3-4$ times more $B>100, A-B=$ approx $90, A$ approx 10 times more
(iii)	max 2 for symptoms yellowing leaves/chlorosis/necrosis; less/stunted, growth; more sugar in leaves; max 2 for explanation plants that are deficient in magnesium make, less/no, chlorophyll; less photosynthesis; less (named) sugar available to plant (due to reduce photosynthesis/reduced sucrose transport);	max 3	I stunted roots A magnesium is part of chlorophyll I energy/food (for sugar)
		[Total: 16]	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

(b)	(chromosome) mutation; an extra chromosome; non-disjunction/failure during meiosis/translocation;	max 1	A trisomy 21 \mathbf{R} more than one chromosome I older mothers, inherited
(c)	discontinuous variation - influenced by genes alone; ORA discontinuous variation - no effect of the environment/does not change over (life)time; ORA discontinuous variation, is discrete/has no intermediates/is qualitative/AW; ORA limited number of phenotypes;	max 3	assume answer is about discontinuous unless stated otherwise continuous variation influenced by gene and environment $=2$ marks (MP1 and MP2) A continuous is measurable
		[Total: 13]	
3 (a)	increase in size/AW; increase in dry, mass/weight;; increase in number of cells; reference to permanent;	max 3	increase in dry mass $=2$ marks I development A reference to cell division/mitosis/reproduction of cells or tissues \mathbf{R} reproduction unqualified
(b) (i)	A - uterus; B - cervix; C - vagina;	3	I womb
(ii)	D - mitosis/cell division; E-implantation/AW;	2	A embedding/attachment \mathbf{R} attachment to placenta I into uterus wall
(iii)	peristalsis; (waves of) contractions; ciliary action/described; movement of fluid (in oviduct);	max 2	A movement by (tiny) hairs \mathbf{R} villi / microvilli
		[Total: 10]	

[^0]| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - October/November 2014 | 0610 | 33 |

4 (a)	have a nucleus; different composition of cell wall; can reproduce sexually; reproduce (asexually) by budding; larger in size; have mitochondria;	max 1	I hyphae A cell wall made of chitin A bacteria use binary fission
(b)	$\begin{aligned} & 2 \mathrm{CO}_{2} ; \\ & 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} ; \end{aligned}$	2	A $2 \mathrm{C}_{2} \mathrm{OH}_{6}$
(c) (i)	maintain constant temperature/prevent the temperature increasing or decreasing too much; prevents the enzymes (in yeast) being denatured; respiration (by yeast) releases heat;	max 2	A for optimum temperature for, enzymes/(yeast) growth /fermentation A prevents yeast being killed by high temperature A reaction is exothermic
(ii)	used to make, amino acids/proteins; amino acids used to make proteins; e.g. enzymes;	max 2	I source of proteins/amino acids
(iii)	control pressure; allows carbon dioxide to escape; prevents oxygen entering; to keep respiration anaerobic; prevents entry of, bacteria/viruses/contaminants;	max 2	I air/gas unqualified A anaerobic conditions R 'keep in clean'/AW
(d) (i)	lag phase/described; log/exponential, phase/described; stationary / plateau, phase/described; key data quote with mass and time;	max 3	units need to be used at least once $0 \mathrm{~h}, 1 \mathrm{~g} \mathrm{dm}^{-3}$ (start) $0-1 \mathrm{~h}, 1-1.2 \mathrm{gdm}^{-3}$ (lag) $1 \mathrm{~h}-10 \mathrm{~h}, 1.2-6.5 \mathrm{~g} \mathrm{dm}^{-3}$ (log) $10 \mathrm{~h}, 6.5 \mathrm{gdm}^{-3}$ (stationary)

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

(ii)	lag phase: (dry) yeast adapting to the environment/AW; yeast are reproducing/dividing; log phase: no limiting factors; enough/plenty of, (named) nutrients; stationary phase: no more reproduction; limiting factors; none/reduction in, (named) nutrients; build-up of, toxic waste/alcohol; reference to carrying capacity;			max 3	e.g. glucose, sugar, ammonia, ammonium (compounds), minerals A low alcohol/toxin, concentration/ correct pH A no growth of yeast (cells) A competition for nutrients A wrong pH
(e)	(na alco bre yea pro bio	ohol production (for uel; g/making dough ris / probiotics/nutrient of carbon dioxide; ion;	mption); ments; e.g. vegemite	max 2	A brewing/wine I baking unqualified
				[Total: 17]	
5 (a) (i)		light intensity / a.u.	limiting factor		
	A	20	light intensity;		
	B	20	temperature;		
	C	20	carbon dioxide concentration;		A \% carbon dioxide
	D	5	light intensity	3	

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

(ii)	factor in/aspect of, the environment; short supply; restricts/prevents, a (named) process;	max 2	A external/outside, factor photosynthesis
(b) (i)allows oxygen to enter the compost; (decomposition by) bacteria/fungi/microorganisms; use aerobic respiration; allow liquid to drain out/avoid waterlogging;	max 2 process e.g.		

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0610	33

| 6 | (a) | diaphragm contracts and, lowers/flattens/AW;
 rib cage rises/moves, upwards/outwards;
 external intercostal muscles contract; | max 3 |
| :---: | :---: | :--- | :--- | :--- |\quad A increases in volume/expands | (b) |
| :--- |
| pH decreases;
 increased rate of aerobic respiration;
 more carbon dioxide (into blood plasma);
 forms (carbonic) acid;
 anaerobic respiration occurs (during strenuous exercise);
 lactic acid produced; |

[^0]: © Cambridge International Examinations 2014

