MARK SCHEME for the October/November 2012 series

0610 BIOLOGY

0610/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

Qu	estion	Expected Answers	Marks	Additional Guidance		
1	(a)	body divided into/segmented three parts / head, thorax and abdomen (one pair of) antennae / feelers wings three pairs / 6 legs compound eyes		R segmented body unqualified do not accept arthropod features		
	(b)	arthropod / Arthropoda	[1]	must have arthr so accept arthropod but reject anthropod		
	(c)	chromosome nucleus mitochondria chloroplast plasmid nucleolus	[2]	Note: Apply list rule		
	(d)	 two groups: 1 – 6 and 11 & 12 migrate to New Zea 1 – 6, New Caledonia / indirect / migration A 11&12, direct (Australia) / migration B correct example of (evolutionary) relationship / DN similarity, e.g. 13 & 14 most distantly related from others / 9 & 10 most closely related to each other ref to, clade(s) / cladogram 	aland IA [max 3]	The arcentral species characteristic transmit		

			Page 3		Mark Scher	ne		Syllabus	Paper	
					GCSE – October/Nov	vember 2012		0610	33	
-	n	1	1							
	(e)	1 2 3 4 5 6 7 8 9	adapt to environn different competition betw struggle for existe ref to variation survival of fittest survive reproduce, pass mutations / change change in the gen changes to physi mating behaviour	nent / condition een individua ence / those that an on their allele ges in DNA ne pool / AW cal / behaviou	ons in new places are Is re better adapted es; A genes I traits ur (of species), e.g.	[max 4]	A cor	nditions on differe	nt islands are d dividuals	ifferent
						[Total: 13]			
2	(a)	1 2 3 4	 removal from the body / organism / cell R 'excreted from body' poisons / toxins / harmful substances named example OR waste products / of metabolism / respiration / deamination / chemical reactions in cells or in the body substances in excess (of requirements) / AW 			/ s [max 3]	Ig fae A 'sul <i>toxic</i> <i>ignor</i> Mpt 3 ions,	eces, egestion, de bstances that cau waste products o re routes from boo a A named exam amino acids	efecation, digest use harm' / 'harn f metabolism / A dy ples, e.g. CO ₂ , u	ion AW nful' \ <i>W = 2 marks</i> urea, salt, named
	(b)	process that occurs in the kidney tubule			letter from Fi	ig. 2.1				
		re	absorption of mos	t of the solute	es in the filtrate	С				
		w co	ater is absorbed by oncentration of urin	y osmosis to o le	determine the	G				
		u	nfiltered blood retu	rns to the ren	al vein	D/E				
						[4]				

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

			cor	nponent	blood	filtrate	urine		
		red	bloc	od cells	\checkmark	×	×	filtrate column	
		whi	te bl	ood cells	\checkmark	×	×	one mark for the	
		pla	sma	proteins	✓	×	×	urine column	
		glu	cose		✓	✓	×		
		ure	а		✓	¥	√		
		salt	s		~	1	√		
		wat	er		~	1	✓		
							[2]		
							[Total: 9]		
3	(a)	(i)	am	ylase A carbol	nydrase		[1]	lg odd spelling	
		(ii)	1 2 3 4 5	starch is not s fungus does for absorptior ref to, respira as nutrient, fo	tarch is not soluble / large /complex ingus does not, secrete / produce, amylase or absorption (of glucose) / AW of to, respiration / growth, (of fungus) s nutrient, for fungus / fermentation / AW		[max 2]	Mpt 2 A ecf from (i) / carbohydrase / enzyme digest starch	
	(b)	1 2 3 4 5	oth cor rec cor / O sto	er fungi / bacte npete for nutrie luce productivit ntaminate the p RA p the process (eria / virus / othe ents ty / yield / quality product / product (early) and steri	er microorganisms / e toxic <i>or</i> harmful product lise fermenter	[max 2]	R contaminate unqualified	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

(c)	1 2 3 4 5 6	energy is lost, between / within, trophic levels / along food chain animals are, at second trophic level / primary consumers OR plants are, autotrophs / producers / first trophic level (energy lost) in animal respiration / heat / (named) metabolic process / movement ref to (more) material that is inedible / not digestible (in longer food chains) ref to 10% energy transfer / ORA less pollution (from farm animal waste)	[max 3]	Ig ref to healthy diet ref to 100→10→1 Mpt 6 A plants use CO_2
(d)	1 2 3 4 5 6 7 8	cheaper requires less energy as less is lost along food chain mycoprotein can be made anywhere / less land (in fermenters) less (animal) waste better for animal welfare / more ethical lower in fat / lowers risk of <u>heart</u> disease suitable for, vegetarians / vegans AVP e.g. quicker, contains fibre, disease free	[max 3]	Note: Use list rule R longer shelf life, help food shortages, more protein, more nutrients, easier to digest
(e)	1 2 3 4 5 6	mycoprotein / fungus production requires supply of corn (starch) this comes from crop plants (fungus) still need to be grown (manufacture) requires energy rate of food supply cannot keep up due to overpopulation AVP e.g. does not contain all nec nutrients, may be consumer resistance to eating mycoprotein foods / needs flavourings / unbalanced diet	[max 3]	R required machinery
			Total: 14]	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

4	(a)	$C_{6}H_{12}O_{6}$ 2 $C_{3}H_{6}O_{3}$	ignore word equationignore energy / ATPR if 2 is not included for C3H6O3[2]R O2, CO2, H2O on either side
	(b)	biceps contracts triceps relaxes	[2] accept ref to <u>antagonistic</u> pair of muscles
	(c)	 During: oxygen consumption increases as exercise starts levels off / increase slows down during the race data quote for consumption during the race After: starts to decrease, immediately at the end of the raminutes gradually decreases after exercise rate returns to original / resting level data quote for consumption after exercise 	ce / at 18Units must be stated at least oncee.g. of Mpt 3: A plateaus between 2.1 – 2.4 dm³ min Maximum is 2.4 dm³ min ⁻¹ , 3 – 4 mins /at start / 5 to 8 or 9 mins to reach maximumce / at 18e.g. of Mpt 7: A Resting rate at 0.25 dm³ min ⁻¹ , 9 – 10 mins / at 18 to 27 or 28 min to reach original level
	(d)	 <u>oxygen debt</u> not enough oxygen supplied (to muscles) during end to muscles to muscles anaerobic respiration lactic acid produced lactic acid, broken down / respired / converted to CO₂ and water / oxidized requires (extra) oxygen oxygen restored to haemoglobin AVP. e.g. restored to myoglobin (in muscles) 	ercise glucose / [max 5] Ig lowers pH, muscles stiff / cramps
			[Total: 13]

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

5	(a)	(i)	(80 50 OF	0 – 30 = 50) / 30 x 100 R max – min / original x 100 = 167 / 166.7 (%)	[2]	two marks for the correct answer (167) if answer incorrect, allow one mark for the correct working / formula R 166, Ig sig figs
		(ii)	1 2 3 4 5 6 7 8	increase in human population / more people to feed more crops being grown / higher yield less land available for farming (land lost to housing etc) farming has become more intensive / technological / less subsistence / AW less use of crop rotation / less land left fallow / monoculture / less use of legumes prevents soil becoming depleted of nitrogen (compounds) new varieties of crop plants have high demand AVP e.g. cheap, easy	[max 3]	
	(b)	(i)	1 2 3 4 5 6 7 8	protein (in manure) broken down / decompose to amino acids by (named) decomposers, in context amino acids / proteins, deaminated deamination described urea converted to ammonia ammonia / ammonium ions, to nitrite / nitrate ions nitrite to nitrate ions nitrification / nitrifying bacteria, in context	[max 4]	
		(ii)	1 2 3 4 5 6 7 8	legumes contain nitrogen-fixing bacteria / rhizobium in root nodules nitrogen fixation / convert nitrogen (in atmosphere) to ammonia / amino acids / organic forms of N transferred to legume for making protein increases N (in soil) for <u>next crop</u> reduces need to use <u>chemical</u> fertilisers legumes are good source of protein crop rotation reduces effects of, pests / diseases	[max 3]	

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	33

	(c)	1 2 3 4 5 6 7 8	waters <u>eutrophication</u> growth of algae / algal bloom light blocked / toxic substances released by algae (fixed) water plants die algae / plants, decayed by bacteria aerobic respiration oxygen concentration decreases in context animals / fish, migrate / die, in context				
		9 10 11	<i>land</i> reduction in organic content of soil soil / fertilizer, blown / washed / leached, away A erosion of soil increase in soil acidity				
		12 13 14 15 16	atmosphere increases loss of nitrous oxide / NO _x to the atmosphere nitrous oxide / NO _x , is a greenhouse gas carbon dioxide from combustion of fossil fuels / in production of fertilisers greenhouse effect / global warming, in context <i>humans</i> qualified health effect on humans / livestock	[max 5]	Mpt 15 linked with mpt 13 or 14 e.g. blue baby syndrome, accumulation in dioxins		
			[Total: 17]				
6	(a)	(i)	transport of oxygen	[1]			
		(ii)	amino acids	[1]	A polypeptides, haem		
		(iii)	iron / Fe / Fe ²⁺	[1]			

		Page 9	Mark Scheme		Syllabus	Paper	
			IGCSE – October/November 2012		0610	33	
 1	1	1					
(b)	(b) 1 fewer red blood cells				lg ref to malaria		
. ,	2	less elastic / less flexible / sickle-shaped, red blood cells			U		
	3	haemoglobin is abnormal shape					
	4	haemoglobin / blood less efficient at transporting oxygen					
	5	less respiration					
	6	less energy / fatigues /	exhaustion / less active /				
	•	feeling faint / breathlessness					
	7	death of tissues linked to oxygen supply					
	8	canillaries are blocked					
	9	nain					
	10	'sickle cell crisis'					
	11	slow / noor growth					
	12	suscentible to infections					
	13	reduced life span					
	14	AVP e.g. problems in pregnancy, kidney disease		[may 3]			
		Avi e.g. problems in p	regnancy, kidney disease	[max 0]			
(c)	1	malaria is common in A	sfrica				
(0)	2	people who are, hetero	zvgous / Hb ^A Hb ^S				
	3	have, sickle cell trait / n	nild sickle cell		Mpt 4 R immune		
	4	protected / AW against	t malaria				
	5	description of sickle cel	Is are less prone to infection				
	6	Hb^{s} continues to appear due to selective advantage / AW		[max 3]	A description of se	lection	
	Ŭ						

		Page 10 Mark Scheme		1	Syllabus	Paper	
			IGCSE – October/November 2012		0610	33	
(d)	Hb ^A is dominant / Hb ^S is recessive / (both) parents are, carriers / heterozygous Hb ^A Hb ^S x Hb ^A Hb ^S Hb ^A , Hb ^S + Hb ^A , Hb ^S (Hb ^A Hb ^A , Hb ^A Hb ^S , Hb ^A Hb ^S) Hb ^S Hb ^S			rs / [max 3]	Note: Ig incorrect text if genetic diagram is correct ECF for Mpt 2 and 3 in diagram key. Mpt 3 linked to correct derivation in Mpt 2 do not allow genotypes for parents or children that are single alleles		
(e)	1 2 3	ref to (ionising) radiation causes / increased risk, m change to DNA / genes	utation	[max 2]	A e.g. of radiatior	n e.g. gamma ra	ays
	[Total: 14]						